Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer

IF 5.3
Peng Jiang, Mingfei Chu, Yu Liang
{"title":"Identification and Validation of a m6A-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer","authors":"Peng Jiang,&nbsp;Mingfei Chu,&nbsp;Yu Liang","doi":"10.1111/jcmm.70376","DOIUrl":null,"url":null,"abstract":"<p>Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC. We obtained high-throughput CRC data from The Cancer Genome Atlas to identify a prognostic model based on m6A-related lncRNAs. Then, the model was constructed and validated through LASSO analysis and Cox regression using R software. The clinical applicability was enhanced by developing a nomogram. We further conducted experiments to reveal the biological function of LINC00543. The prognostic model based on eight m6A-related lncRNAs exhibited impressive accuracy, achieving an area under the receiver-operating curve value of 0.753, 0.682 and 0.706 for predictions after 1, 3 and 5 years, respectively. The Kaplan–Meier analysis confirmed the consistency of the model across different pathological characteristics, with a high-risk group showing a poorer prognosis. Furthermore, the model was linked to immune function, particularly the type I interferon response, through gene set enrichment analysis and experimental validation. Our study presented a m6A-related lncRNA prognostic model for CRC with potential clinical utility. The model not only provided improved accuracy over traditional staging but also offered insights into the immunological mechanisms of CRC, facilitating personalised medicine approaches.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accumulating research indicates that N6-methyladenosine (m6A) modification plays a pivotal role in colorectal cancer (CRC). Hence, investigating the m6A-related long noncoding RNAs (lncRNAs) significantly improves therapeutic strategies and prognostic assessments. This study aimed to develop and validate a prognostic model based on m6A-related lncRNAs to improve the prediction of clinical outcomes and identify potential immunological mechanisms in CRC. We obtained high-throughput CRC data from The Cancer Genome Atlas to identify a prognostic model based on m6A-related lncRNAs. Then, the model was constructed and validated through LASSO analysis and Cox regression using R software. The clinical applicability was enhanced by developing a nomogram. We further conducted experiments to reveal the biological function of LINC00543. The prognostic model based on eight m6A-related lncRNAs exhibited impressive accuracy, achieving an area under the receiver-operating curve value of 0.753, 0.682 and 0.706 for predictions after 1, 3 and 5 years, respectively. The Kaplan–Meier analysis confirmed the consistency of the model across different pathological characteristics, with a high-risk group showing a poorer prognosis. Furthermore, the model was linked to immune function, particularly the type I interferon response, through gene set enrichment analysis and experimental validation. Our study presented a m6A-related lncRNA prognostic model for CRC with potential clinical utility. The model not only provided improved accuracy over traditional staging but also offered insights into the immunological mechanisms of CRC, facilitating personalised medicine approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信