Efficient spermidine production using a multi-enzyme cascade system utilizing methionine adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference

IF 4.1 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Linbo Gou , Di Liu , Tai-ping Fan , Huaxiang Deng , Yujie Cai
{"title":"Efficient spermidine production using a multi-enzyme cascade system utilizing methionine adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference","authors":"Linbo Gou ,&nbsp;Di Liu ,&nbsp;Tai-ping Fan ,&nbsp;Huaxiang Deng ,&nbsp;Yujie Cai","doi":"10.1016/j.jbiotec.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><div>Methionine adenosyltransferases (MATs; EC 2.5.1.6) are key enzymes that catalyze a crucial step in the spermidine biosynthesis pathway. Due to MAT's significant product inhibition, S-adenosylmethionine (SAM) and spermidine production faces challenges. We evaluated MATs from 20 lactic acid bacteria (LAB) to identify enzymes with acidic preference and lower susceptibility to product inhibition. <em>Lactobacillus fermentum</em>'s MAT (LfMAT) emerged as a candidate with desirable characteristics. LfMAT exhibited strong activity in acidic environments, maintaining over 85 % activity between pH 6.0–8.5 for 60 min, with peak efficacy at pH 7.0. LfMAT produced 4.2 mM SAM from 5 mM substrate, indicating reduced product inhibition. Ultimately, using an <em>in vitro</em> multi-enzyme cascade system containing LfMAT, S-adenosylmethionine decarboxylase, and spermidine synthase, we successfully produced 12.9 g·L<sup>−1</sup> of spermidine. This study establishes a cascade reaction platform, offering a novel approach for the efficient synthesis of spermidine and other polyamines.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"399 ","pages":"Pages 141-152"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625000227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methionine adenosyltransferases (MATs; EC 2.5.1.6) are key enzymes that catalyze a crucial step in the spermidine biosynthesis pathway. Due to MAT's significant product inhibition, S-adenosylmethionine (SAM) and spermidine production faces challenges. We evaluated MATs from 20 lactic acid bacteria (LAB) to identify enzymes with acidic preference and lower susceptibility to product inhibition. Lactobacillus fermentum's MAT (LfMAT) emerged as a candidate with desirable characteristics. LfMAT exhibited strong activity in acidic environments, maintaining over 85 % activity between pH 6.0–8.5 for 60 min, with peak efficacy at pH 7.0. LfMAT produced 4.2 mM SAM from 5 mM substrate, indicating reduced product inhibition. Ultimately, using an in vitro multi-enzyme cascade system containing LfMAT, S-adenosylmethionine decarboxylase, and spermidine synthase, we successfully produced 12.9 g·L−1 of spermidine. This study establishes a cascade reaction platform, offering a novel approach for the efficient synthesis of spermidine and other polyamines.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biotechnology
Journal of biotechnology 工程技术-生物工程与应用微生物
CiteScore
8.90
自引率
2.40%
发文量
190
审稿时长
45 days
期刊介绍: The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信