Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

IF 2.1 4区 生物学 Q4 CELL BIOLOGY
Basmah M Eldakhakhny, Fatma M Ghoneim, Mona F M Soliman, Salwa M Abo El-Khair, Ayman Z Elsamanoudy, Yousef M Almoghrabi, Passant M Mohie, Fatma E Hassan, Amany A Abd Elfattah
{"title":"Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.","authors":"Basmah M Eldakhakhny, Fatma M Ghoneim, Mona F M Soliman, Salwa M Abo El-Khair, Ayman Z Elsamanoudy, Yousef M Almoghrabi, Passant M Mohie, Fatma E Hassan, Amany A Abd Elfattah","doi":"10.1007/s00418-025-02355-8","DOIUrl":null,"url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin. GDM was induced using streptozotocin (STZ) at 40 mg/kg, and metformin was administered at 200 mg/kg from gestational day (GD) 4 to GD17. Blood glucose and insulin levels were assessed, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was calculated. Placentae were weighed and subjected to histological, immunohistochemical, and molecular analyses, focusing on key angiogenesis markers (VEGF, VEGFR, CD31, KLF2) and oxidative stress indicators (MDA, eNOS). GDM increased placental weight, angiogenesis (elevated VEGF, VEGFR, CD31), and oxidative stress (elevated MDA, eNOS). Histopathological changes included villous edema, membrane rupture, and hemosiderin deposition. Metformin treatment reduced placental weight; normalized VEGF, KLF2, and PlGF expression; and improved placental architecture. Additionally, oxidative stress was significantly reduced in metformin-treated GDM rats. In conclusion, GDM induces placental abnormalities, promoting excessive angiogenesis and oxidative stress, potentially leading to IUGR and other complications. Metformin showed protective effects by reducing placental overgrowth and restoring vascular and oxidative balance. These findings suggest that metformin may play a therapeutic role in improving placental health in GDM pregnancies, warranting further investigation into its long-term effects on fetal development and maternal health.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"28"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-025-02355-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin. GDM was induced using streptozotocin (STZ) at 40 mg/kg, and metformin was administered at 200 mg/kg from gestational day (GD) 4 to GD17. Blood glucose and insulin levels were assessed, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was calculated. Placentae were weighed and subjected to histological, immunohistochemical, and molecular analyses, focusing on key angiogenesis markers (VEGF, VEGFR, CD31, KLF2) and oxidative stress indicators (MDA, eNOS). GDM increased placental weight, angiogenesis (elevated VEGF, VEGFR, CD31), and oxidative stress (elevated MDA, eNOS). Histopathological changes included villous edema, membrane rupture, and hemosiderin deposition. Metformin treatment reduced placental weight; normalized VEGF, KLF2, and PlGF expression; and improved placental architecture. Additionally, oxidative stress was significantly reduced in metformin-treated GDM rats. In conclusion, GDM induces placental abnormalities, promoting excessive angiogenesis and oxidative stress, potentially leading to IUGR and other complications. Metformin showed protective effects by reducing placental overgrowth and restoring vascular and oxidative balance. These findings suggest that metformin may play a therapeutic role in improving placental health in GDM pregnancies, warranting further investigation into its long-term effects on fetal development and maternal health.

二甲双胍对妊娠糖尿病大鼠模型胎盘血管生成的调节作用。
妊娠期糖尿病(GDM)严重破坏胎盘结构和功能,导致宫内生长受限(IUGR)和先兆子痫等并发症。本研究旨在探讨GDM对胎盘组织学、血管生成和氧化应激的影响,并评估二甲双胍在减轻这些变化中的保护作用。将60只妊娠sd大鼠分为对照组、二甲双胍治疗组、GDM组和二甲双胍治疗组。从妊娠第4天至妊娠第17天,用链脲佐菌素(STZ)诱导GDM,剂量为40 mg/kg,二甲双胍剂量为200 mg/kg。评估血糖和胰岛素水平,计算胰岛素抵抗稳态模型评估(HOMA-IR)。对胎盘称重并进行组织学、免疫组织化学和分子分析,重点关注关键血管生成标志物(VEGF、VEGFR、CD31、KLF2)和氧化应激指标(MDA、eNOS)。GDM增加胎盘重量、血管生成(VEGF、VEGFR、CD31升高)和氧化应激(MDA、eNOS升高)。组织病理学改变包括绒毛水肿、膜破裂和含铁血黄素沉积。二甲双胍治疗可降低胎盘重量;VEGF、KLF2和PlGF表达归一化;改善胎盘结构。此外,二甲双胍处理的GDM大鼠氧化应激显著降低。综上所述,GDM诱导胎盘异常,促进过度血管生成和氧化应激,可能导致IUGR等并发症。二甲双胍通过减少胎盘过度生长和恢复血管和氧化平衡显示出保护作用。这些发现表明,二甲双胍可能在改善妊娠期糖尿病患者胎盘健康方面发挥治疗作用,值得进一步研究其对胎儿发育和孕产妇健康的长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信