Novel Nanozyme-Based Multicomponent in situ Hydrogels with Antibacterial, Hypoxia-Relieving and Proliferative Properties for Promoting Gastrostomy Tube Tract Maturation.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S496537
Feng Xiao, Bisong Yan, Tianwen Yuan, Yang He, Xiaojun Zhang, Xiaoyun He, Wei Peng, Ying Xu, Jun Cao
{"title":"Novel Nanozyme-Based Multicomponent in situ Hydrogels with Antibacterial, Hypoxia-Relieving and Proliferative Properties for Promoting Gastrostomy Tube Tract Maturation.","authors":"Feng Xiao, Bisong Yan, Tianwen Yuan, Yang He, Xiaojun Zhang, Xiaoyun He, Wei Peng, Ying Xu, Jun Cao","doi":"10.2147/IJN.S496537","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.</p><p><strong>Methods: </strong>Herein, a nanozyme loaded bioactive hydrogels (MO-HPA) was developed to accelerate tract maturation and inhibit bacteria. Nano-manganese dioxide (n-MO) and polylysine modified hyaluronic acid (HP) were synthesized and characterized. In situ hydrogels were prepared by mixing the HP/ alginate solution, and the n-MO solution containing Ca<sup>2+</sup>. The structure, physicochemical and mechanical properties of MO-HPA were evaluated. Furthermore, the antibacterial activity, and the In vitro and intracellular oxygen production efficacy were determined. The cell migration, wound healing and tube tract maturation promotion effect were assessed in cell experiments and in skin defect mouse model, as well as rabbit gastrostomy model.</p><p><strong>Results: </strong>The n-MO has a uniform particle size with oxygen producing activities. The MO-HPA demonstrated a homogeneous and porous microstructure. Additionally, the gelation time, swelling ratio, rheological behavior, and mechanical properties of hydrogels could be tuned by adjusting the HP content. The antibacterial efficiency of the MO-HPA<sub>1.0</sub> group on <i>E. coli</i> and <i>S. aureus</i> increased by about 40.1% and 55.6% respectively, compared to the MO-HPA<sub>0.5</sub> group. Additionally, MO-HPA<sub>1.0</sub> hydrogel demonstrated effective oxygen-producing and cell migration-promoting functions in both in vitro and cellular experiments. The MO-HPA<sub>1.0</sub> group significantly accelerated wound healing in both of mouse skin defect model and rabbit gastrostomy model. The hydrogel group exhibited a significant promotion in collagen content and reduction in HIF-1α, which effectively hastened tract maturation.</p><p><strong>Conclusion: </strong>Therefore, our study provides new and critical insights into a strategy to design bioactive hydrogels with multiple functions, which can open up a new avenue for accelerated wound healing after gastrostomy.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"827-848"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S496537","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Gastrostomy is the commonly used enteral feeding technology. The clinical risks caused by tube dislodgement and peristomal site infection are the common complications before complete tract maturation after gastrostomy. However, there is currently no relevant research to promote gastrostomy wound treatment and tract maturation.

Methods: Herein, a nanozyme loaded bioactive hydrogels (MO-HPA) was developed to accelerate tract maturation and inhibit bacteria. Nano-manganese dioxide (n-MO) and polylysine modified hyaluronic acid (HP) were synthesized and characterized. In situ hydrogels were prepared by mixing the HP/ alginate solution, and the n-MO solution containing Ca2+. The structure, physicochemical and mechanical properties of MO-HPA were evaluated. Furthermore, the antibacterial activity, and the In vitro and intracellular oxygen production efficacy were determined. The cell migration, wound healing and tube tract maturation promotion effect were assessed in cell experiments and in skin defect mouse model, as well as rabbit gastrostomy model.

Results: The n-MO has a uniform particle size with oxygen producing activities. The MO-HPA demonstrated a homogeneous and porous microstructure. Additionally, the gelation time, swelling ratio, rheological behavior, and mechanical properties of hydrogels could be tuned by adjusting the HP content. The antibacterial efficiency of the MO-HPA1.0 group on E. coli and S. aureus increased by about 40.1% and 55.6% respectively, compared to the MO-HPA0.5 group. Additionally, MO-HPA1.0 hydrogel demonstrated effective oxygen-producing and cell migration-promoting functions in both in vitro and cellular experiments. The MO-HPA1.0 group significantly accelerated wound healing in both of mouse skin defect model and rabbit gastrostomy model. The hydrogel group exhibited a significant promotion in collagen content and reduction in HIF-1α, which effectively hastened tract maturation.

Conclusion: Therefore, our study provides new and critical insights into a strategy to design bioactive hydrogels with multiple functions, which can open up a new avenue for accelerated wound healing after gastrostomy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信