iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

IF 6.6 2区 医学 Q1 NANOSCIENCE & NANOTECHNOLOGY
International Journal of Nanomedicine Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.2147/IJN.S494151
Tingting Liu, Xiaoxin Liang, Wei Liu, Shuai Yang, Tao Cui, Fei Yan, Zhenzhou Li
{"title":"iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.","authors":"Tingting Liu, Xiaoxin Liang, Wei Liu, Shuai Yang, Tao Cui, Fei Yan, Zhenzhou Li","doi":"10.2147/IJN.S494151","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells. Here, we selected it as the imaging target and fabricated iRGD-sGVs acoustic probe for the early-stage diagnosis of osteosarcoma.</p><p><strong>Materials and methods: </strong>Biological nanoscale gas vesicles (sGVs) were extracted from <i>Serratia 39006</i>. Their morphology was analyzed with phase contrast and transmission electron microscopes. Particle size and zeta potential were measured by a Zetasizer. iRGD-targeted molecular probes (iRGD-sGVs) were prepared by coupling iRGD to sGVs via Mal-PEG2000-NHS. Targeting efficiency of iRGD-sGVs was evaluated using flow cytometry and confocal microscopy on endothelial and K7M2 osteosarcoma cells. In vivo contrast-enhanced ultrasound imaging of iRGD-sGVs was performed in osteosarcoma-bearing mice, and the expression of a<sub>v</sub>β<sub>3</sub> in osteosarcoma was detected through immunofluorescence staining assay. Biocompatibility of sGVs was assessed by hemolysis tests, CCK8 cytotoxicity assays, blood biochemical tests, and HE staining.</p><p><strong>Results: </strong>sGVs from <i>Serratia</i>.39006 have smaller particle size (about 160 nm). Our in vitro and in vivo experiments showed the specifically binding ability of iRGD-sGVs to both vascular endothelial cells and tumor cells, producing the stronger and longer acoustic signals in tumors in comparison with the control probe. Immunofluorescence staining results indicated iRGD-sGVs were co-localized with highly expressed αvβ3 in tumor vasculature and osteosarcoma cells. Biocompatibility analysis showed no significant cytotoxicity of iRGD-sGVs to mice.</p><p><strong>Conclusion: </strong>Our study provides a new strategy for early diagnosis of osteosarcoma.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"791-805"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S494151","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells. Here, we selected it as the imaging target and fabricated iRGD-sGVs acoustic probe for the early-stage diagnosis of osteosarcoma.

Materials and methods: Biological nanoscale gas vesicles (sGVs) were extracted from Serratia 39006. Their morphology was analyzed with phase contrast and transmission electron microscopes. Particle size and zeta potential were measured by a Zetasizer. iRGD-targeted molecular probes (iRGD-sGVs) were prepared by coupling iRGD to sGVs via Mal-PEG2000-NHS. Targeting efficiency of iRGD-sGVs was evaluated using flow cytometry and confocal microscopy on endothelial and K7M2 osteosarcoma cells. In vivo contrast-enhanced ultrasound imaging of iRGD-sGVs was performed in osteosarcoma-bearing mice, and the expression of avβ3 in osteosarcoma was detected through immunofluorescence staining assay. Biocompatibility of sGVs was assessed by hemolysis tests, CCK8 cytotoxicity assays, blood biochemical tests, and HE staining.

Results: sGVs from Serratia.39006 have smaller particle size (about 160 nm). Our in vitro and in vivo experiments showed the specifically binding ability of iRGD-sGVs to both vascular endothelial cells and tumor cells, producing the stronger and longer acoustic signals in tumors in comparison with the control probe. Immunofluorescence staining results indicated iRGD-sGVs were co-localized with highly expressed αvβ3 in tumor vasculature and osteosarcoma cells. Biocompatibility analysis showed no significant cytotoxicity of iRGD-sGVs to mice.

Conclusion: Our study provides a new strategy for early diagnosis of osteosarcoma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomedicine
International Journal of Nanomedicine NANOSCIENCE & NANOTECHNOLOGY-PHARMACOLOGY & PHARMACY
CiteScore
14.40
自引率
3.80%
发文量
511
审稿时长
1.4 months
期刊介绍: The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area. With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field. Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.
文献相关原料
公司名称
产品信息
索莱宝
Dialysis bags
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信