Yang Lu, Yang Yuhao, Dingsheng Cha, Zehua Li, Lilin Xiao, Xuan Liao, Shenghong Li, Xiao Jiang, Boyong Hu, Hongwei Liu
{"title":"Hypoxia-regulated miR-103-3p/FGF2 axis in adipose-derived stem cells promotes angiogenesis by vascular endothelial cells during ischemic tissue repair.","authors":"Yang Lu, Yang Yuhao, Dingsheng Cha, Zehua Li, Lilin Xiao, Xuan Liao, Shenghong Li, Xiao Jiang, Boyong Hu, Hongwei Liu","doi":"10.1016/j.ijcard.2025.133004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear.</p><p><strong>Methods: </strong>We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting. Proliferation of ADSCs under hypoxia was assessed using a CCK-8 assay. Co-culture experiments of hypoxia-induced ADSCs with vascular endothelial cells were conducted, and migration and tube formation abilities were evaluated through wound healing assays, transwell cell migration, and tube formation experiments.</p><p><strong>Results: </strong>Hypoxia treatment induced significant upregulation of FGF2 expression in ADSCs, along with enhanced cell proliferation. Co-culture of hypoxia-induced ADSCs with vascular endothelial cells showed increased migration and tube formation abilities of endothelial cells. Knockdown of FGF2 inhibited these processes, while overexpression of miR-103-3p mimics in ADSCs suppressed endothelial cell migration and tube formation. FGF2 is a direct target of miR-103-3p in ADSCs. miR-103-3p/FGF2 axis regulates ADSCs on the biological activity of co-cultured vascular endothelial cells. Moreover, in the ischemic skin flap nude mouse model, ADSCs injection showed increased blood vessel formation and reduced flap necrosis, with the most significant improvement observed with ADSCs of miR-103-3p inhibitor overexpressed.</p><p><strong>Conclusion: </strong>Hypoxia induces paracrine secretion of FGF2 from ADSCs, which enhances endothelial cell angiogenesis. FGF2 expression is regulated by miR-103-3p in ADSCs. The miR-103-3p/FGF2 axis induces endothelial cell migration and angiogenesis and finally modulates ischemic skin flap repair in nude mice in vivo.</p>","PeriodicalId":13710,"journal":{"name":"International journal of cardiology","volume":" ","pages":"133004"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijcard.2025.133004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear.
Methods: We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting. Proliferation of ADSCs under hypoxia was assessed using a CCK-8 assay. Co-culture experiments of hypoxia-induced ADSCs with vascular endothelial cells were conducted, and migration and tube formation abilities were evaluated through wound healing assays, transwell cell migration, and tube formation experiments.
Results: Hypoxia treatment induced significant upregulation of FGF2 expression in ADSCs, along with enhanced cell proliferation. Co-culture of hypoxia-induced ADSCs with vascular endothelial cells showed increased migration and tube formation abilities of endothelial cells. Knockdown of FGF2 inhibited these processes, while overexpression of miR-103-3p mimics in ADSCs suppressed endothelial cell migration and tube formation. FGF2 is a direct target of miR-103-3p in ADSCs. miR-103-3p/FGF2 axis regulates ADSCs on the biological activity of co-cultured vascular endothelial cells. Moreover, in the ischemic skin flap nude mouse model, ADSCs injection showed increased blood vessel formation and reduced flap necrosis, with the most significant improvement observed with ADSCs of miR-103-3p inhibitor overexpressed.
Conclusion: Hypoxia induces paracrine secretion of FGF2 from ADSCs, which enhances endothelial cell angiogenesis. FGF2 expression is regulated by miR-103-3p in ADSCs. The miR-103-3p/FGF2 axis induces endothelial cell migration and angiogenesis and finally modulates ischemic skin flap repair in nude mice in vivo.
期刊介绍:
The International Journal of Cardiology is devoted to cardiology in the broadest sense. Both basic research and clinical papers can be submitted. The journal serves the interest of both practicing clinicians and researchers.
In addition to original papers, we are launching a range of new manuscript types, including Consensus and Position Papers, Systematic Reviews, Meta-analyses, and Short communications. Case reports are no longer acceptable. Controversial techniques, issues on health policy and social medicine are discussed and serve as useful tools for encouraging debate.