Molecular docking and molecular dynamics simulation studies of inhibitor candidates against Anopheles gambiae 3-hydroxykynurenine transaminase and implications on vector control.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-01-02 eCollection Date: 2025-01-15 DOI:10.1016/j.heliyon.2025.e41633
Eunice O Adedeji, Olubanke O Ogunlana, Gbolahan O Oduselu, Rainer Koenig, Ezekiel Adebiyi, Opeyemi S Soremekun, Segun Fatumo
{"title":"Molecular docking and molecular dynamics simulation studies of inhibitor candidates against <i>Anopheles gambiae</i> 3-hydroxykynurenine transaminase and implications on vector control.","authors":"Eunice O Adedeji, Olubanke O Ogunlana, Gbolahan O Oduselu, Rainer Koenig, Ezekiel Adebiyi, Opeyemi S Soremekun, Segun Fatumo","doi":"10.1016/j.heliyon.2025.e41633","DOIUrl":null,"url":null,"abstract":"<p><p>Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of <i>Anopheles gambiae</i> 3HKT (<i>Ag</i>3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against <i>Anopheles gambiae</i> 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4. The top three identified hits were subjected to 300 ns molecular dynamics simulation using AMBER 18 and ADMET analysis using SWISSADME predictor and ADMETSAR. Replacement of alkyl attachment on C5 of isoxazole or oxadiazole derivative with a cycloalkyl group yielded compounds with lower binding energy than their straight chain counterparts. The top three compounds were brominated compounds, 2-[3-(4-bromophenyl)-1,2-oxazol-5-yl]cyclopentane-1-carboxylic acid, 2-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, 3-[3-(4-bromo-2-methylphenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, and they had binding energies of -8.58, -8.25, and -8.18 kcal/mol in virtual screening against 2CH2 protein target, respectively. These compounds were predicted to be less toxic than temephos, a standard larvicide and more biodegradable than previously reported inhibitors. The three compounds exhibited a greater stabilizing effect on 2CH2 protein target than 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid, a previously reported inhibitor candidate with good larvicidal activity on <i>Aedes aegypti</i>. Further thermodynamic calculations revealed that the top three compounds possessed total binding energies (ΔG<sub>bind</sub>) of -26.64 kcal/mol, -24.26 kcal/mol and -14.11 kcal/mol, respectively, as compared to -12.02 kcal/mol for 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid. These compounds could be better larvicides than previously reported isoxazole or oxadiazole derivatives and safer than temephos.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 1","pages":"e41633"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e41633","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Isoxazole and oxadiazole derivatives inhibiting 3-hydroxykynurenine transaminase (3HKT) are potential larvicidal candidates. This study aims to identify more suited potential inhibitors of Anopheles gambiae 3HKT (Ag3HKT) through molecular docking and molecular dynamics simulation. A total of 958 compounds were docked against Anopheles gambiae 3HKT (PDB ID: 2CH2) using Autodock vina and Autodock4. The top three identified hits were subjected to 300 ns molecular dynamics simulation using AMBER 18 and ADMET analysis using SWISSADME predictor and ADMETSAR. Replacement of alkyl attachment on C5 of isoxazole or oxadiazole derivative with a cycloalkyl group yielded compounds with lower binding energy than their straight chain counterparts. The top three compounds were brominated compounds, 2-[3-(4-bromophenyl)-1,2-oxazol-5-yl]cyclopentane-1-carboxylic acid, 2-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, 3-[3-(4-bromo-2-methylphenyl)-1,2,4-oxadiazol-5-yl]cyclopentane-1-carboxylic acid, and they had binding energies of -8.58, -8.25, and -8.18 kcal/mol in virtual screening against 2CH2 protein target, respectively. These compounds were predicted to be less toxic than temephos, a standard larvicide and more biodegradable than previously reported inhibitors. The three compounds exhibited a greater stabilizing effect on 2CH2 protein target than 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid, a previously reported inhibitor candidate with good larvicidal activity on Aedes aegypti. Further thermodynamic calculations revealed that the top three compounds possessed total binding energies (ΔGbind) of -26.64 kcal/mol, -24.26 kcal/mol and -14.11 kcal/mol, respectively, as compared to -12.02 kcal/mol for 4-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-yl]butanoic acid. These compounds could be better larvicides than previously reported isoxazole or oxadiazole derivatives and safer than temephos.

候选冈比亚按蚊 3-羟基犬尿氨酸转氨酶抑制剂的分子对接和分子动力学模拟研究及其对病媒控制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信