Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin

IF 3.4 3区 环境科学与生态学 Q3 CELL & TISSUE ENGINEERING
Yuta Mishima , Shintaro Okada , Akihiro Ishikawa , Bo Wang , Masazumi Waseda , Mika K. Kaneko , Yukinari Kato , Shin Kaneko
{"title":"Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin","authors":"Yuta Mishima ,&nbsp;Shintaro Okada ,&nbsp;Akihiro Ishikawa ,&nbsp;Bo Wang ,&nbsp;Masazumi Waseda ,&nbsp;Mika K. Kaneko ,&nbsp;Yukinari Kato ,&nbsp;Shin Kaneko","doi":"10.1016/j.reth.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy. We developed CAR-T cells based on the single-chain variable fragment (scFv) derived from the cancer-specific monoclonal antibody PcMab-6, which selectively targets glycosylation modifications on PODXL-expressing cancer cells. As a control, CAR-T cells were also generated from PcMab-47, a non-cancer-specific antibody for PODXL. <em>In vitro</em> experiments demonstrated that CAR-T cells based on PcMab-6 exhibited significant antitumor activity with reduced off-target effects on normal cells compared to PcMab-47-derived CAR-T cells. Additionally, to enhance the persistence and therapeutic efficacy of these CAR-T cells, we developed a humanized version of PcMab-6 scFv. The humanized CAR-T cells showed extended antitumor effects <em>in vivo</em>, demonstrating the potential for prolonged therapeutic activity. These findings underscore the utility of CasMab technology in generating highly specific and safer CAR-T cell therapies for solid tumors, highlighting the promise of humanized CAR-T cells for clinical application.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"28 ","pages":"Pages 292-300"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757227/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320424002293","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy. We developed CAR-T cells based on the single-chain variable fragment (scFv) derived from the cancer-specific monoclonal antibody PcMab-6, which selectively targets glycosylation modifications on PODXL-expressing cancer cells. As a control, CAR-T cells were also generated from PcMab-47, a non-cancer-specific antibody for PODXL. In vitro experiments demonstrated that CAR-T cells based on PcMab-6 exhibited significant antitumor activity with reduced off-target effects on normal cells compared to PcMab-47-derived CAR-T cells. Additionally, to enhance the persistence and therapeutic efficacy of these CAR-T cells, we developed a humanized version of PcMab-6 scFv. The humanized CAR-T cells showed extended antitumor effects in vivo, demonstrating the potential for prolonged therapeutic activity. These findings underscore the utility of CasMab technology in generating highly specific and safer CAR-T cell therapies for solid tumors, highlighting the promise of humanized CAR-T cells for clinical application.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Therapy
Regenerative Therapy Engineering-Biomedical Engineering
CiteScore
6.00
自引率
2.30%
发文量
106
审稿时长
49 days
期刊介绍: Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine. Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信