Predicting functional outcomes of patients with spontaneous intracerebral hemorrhage based on explainable machine learning models: a multicenter retrospective study.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI:10.3389/fneur.2024.1494934
Bin Pan, Fengda Li, Chuanghong Liu, Zeyi Li, Chengfa Sun, Kaijian Xia, Hong Xu, Gang Kong, Longyuan Gu, Kaiyuan Cheng
{"title":"Predicting functional outcomes of patients with spontaneous intracerebral hemorrhage based on explainable machine learning models: a multicenter retrospective study.","authors":"Bin Pan, Fengda Li, Chuanghong Liu, Zeyi Li, Chengfa Sun, Kaijian Xia, Hong Xu, Gang Kong, Longyuan Gu, Kaiyuan Cheng","doi":"10.3389/fneur.2024.1494934","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spontaneous intracerebral hemorrhage (SICH) is the second most common cause of cerebrovascular disease after ischemic stroke, with high mortality and disability rates, imposing a significant economic burden on families and society. This retrospective study aimed to develop and evaluate an interpretable machine learning model to predict functional outcomes 3 months after SICH.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on clinical data from 380 patients with SICH who were hospitalized at three different centers between June 2020 and June 2023. Seventy percent of the samples were randomly selected as the training set, while the remaining 30% were used as the validation set. Univariate analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Pearson correlation analysis were used to screen clinical variables. The selected variables were then incorporated into five machine learning models: complementary naive bayes (CNB), support vector machine (SVM), gaussian naive bayes (GNB), multilayer perceptron (MLP), and extreme gradient boosting (XGB), to assess their performance. Additionally, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model, and global and individual interpretive analyses were conducted using importance ranking and Shapley additive explanations (SHAP).</p><p><strong>Results: </strong>Among the 380 patients, 95 ultimately had poor prognostic outcomes. In the validation set, the AUC values for CNB, SVM, GNB, MLP, and XGB models were 0.899 (0.816-0.979), 0.916 (0.847-0.982), 0.730 (0.602-0.857), 0.913 (0.834-0.986), and 0.969 (0.937-0.998), respectively. Therefore, the XGB model performed the best among the five algorithms. SHAP analysis revealed that the GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels were the most important variables for poor prognosis.</p><p><strong>Conclusion: </strong>The XGB model developed in this study can effectively predict the risk of poor prognosis in patients with SICH, helping clinicians make personalized and rational clinical decisions. Prognostic risk in patients with SICH is closely associated with GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"15 ","pages":"1494934"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757109/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2024.1494934","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Spontaneous intracerebral hemorrhage (SICH) is the second most common cause of cerebrovascular disease after ischemic stroke, with high mortality and disability rates, imposing a significant economic burden on families and society. This retrospective study aimed to develop and evaluate an interpretable machine learning model to predict functional outcomes 3 months after SICH.

Methods: A retrospective analysis was conducted on clinical data from 380 patients with SICH who were hospitalized at three different centers between June 2020 and June 2023. Seventy percent of the samples were randomly selected as the training set, while the remaining 30% were used as the validation set. Univariate analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and Pearson correlation analysis were used to screen clinical variables. The selected variables were then incorporated into five machine learning models: complementary naive bayes (CNB), support vector machine (SVM), gaussian naive bayes (GNB), multilayer perceptron (MLP), and extreme gradient boosting (XGB), to assess their performance. Additionally, the area under the curve (AUC) values were evaluated to compare the performance of each algorithmic model, and global and individual interpretive analyses were conducted using importance ranking and Shapley additive explanations (SHAP).

Results: Among the 380 patients, 95 ultimately had poor prognostic outcomes. In the validation set, the AUC values for CNB, SVM, GNB, MLP, and XGB models were 0.899 (0.816-0.979), 0.916 (0.847-0.982), 0.730 (0.602-0.857), 0.913 (0.834-0.986), and 0.969 (0.937-0.998), respectively. Therefore, the XGB model performed the best among the five algorithms. SHAP analysis revealed that the GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels were the most important variables for poor prognosis.

Conclusion: The XGB model developed in this study can effectively predict the risk of poor prognosis in patients with SICH, helping clinicians make personalized and rational clinical decisions. Prognostic risk in patients with SICH is closely associated with GCS score, hematoma volume, blood pressure changes, platelets, age, bleeding location, and blood glucose levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信