Intraoperative circulation predict prolonged length of stay after head and neck free flap reconstruction: a retrospective study based on machine learning.

IF 3.5 3区 医学 Q2 ONCOLOGY
Frontiers in Oncology Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI:10.3389/fonc.2024.1473447
Zhongqi Liu, Jinbei Wen, Yingzhen Chen, Bin Zhou, Minghui Cao, Mingyan Guo
{"title":"Intraoperative circulation predict prolonged length of stay after head and neck free flap reconstruction: a retrospective study based on machine learning.","authors":"Zhongqi Liu, Jinbei Wen, Yingzhen Chen, Bin Zhou, Minghui Cao, Mingyan Guo","doi":"10.3389/fonc.2024.1473447","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and neck free flap reconstruction presents challenges in managing intraoperative circulation, potentially leading to prolonged length of stay (PLOS). Limited research exists on the associations between intraoperative circulation and PLOS given the difficulty of manual quantification of intraoperative circulation time-series data. Therefore, this study aimed to quantify intraoperative circulation data and investigate its association with PLOS after free flap reconstruction utilizing machine learning algorithms.</p><p><strong>Methods: </strong>804 patients who underwent head and neck free flap reconstruction between September 2019 and February 2021 were included. Machine learning tools (Fourier transform, et al.) were utilized to extract features to quantify intraoperative circulation data. To compare the accuracy of quantified intraoperative circulation and manual intraoperative circulation assessments in the PLOS prediction, predictive models based on these 2 assessment methods were developed and validated.</p><p><strong>Results: </strong>Intraoperative circulation was quantified and a total of 114 features were extracted from intraoperative circulation data. Quantified intraoperative circulation models with a real-time predictive manner were constructed. A higher area under the receiver operating characteristic curve (AUROC) was observed in quantified intraoperative circulation data models (0.801 [95% CI, 0.733-0.869]) compared to manual intraoperative circulation assessment models (0.719 [95% CI, 0.641-0.797]) in PLOS prediction.</p><p><strong>Conclusion: </strong>Machine learning algorithms facilitated quantification of intraoperative circulation data. The developed real-time quantified intraoperative circulation prediction models based on this quantification offer a potential strategy to optimize intraoperative circulation management and mitigate PLOS following head and neck free flap reconstruction.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"14 ","pages":"1473447"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1473447","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Head and neck free flap reconstruction presents challenges in managing intraoperative circulation, potentially leading to prolonged length of stay (PLOS). Limited research exists on the associations between intraoperative circulation and PLOS given the difficulty of manual quantification of intraoperative circulation time-series data. Therefore, this study aimed to quantify intraoperative circulation data and investigate its association with PLOS after free flap reconstruction utilizing machine learning algorithms.

Methods: 804 patients who underwent head and neck free flap reconstruction between September 2019 and February 2021 were included. Machine learning tools (Fourier transform, et al.) were utilized to extract features to quantify intraoperative circulation data. To compare the accuracy of quantified intraoperative circulation and manual intraoperative circulation assessments in the PLOS prediction, predictive models based on these 2 assessment methods were developed and validated.

Results: Intraoperative circulation was quantified and a total of 114 features were extracted from intraoperative circulation data. Quantified intraoperative circulation models with a real-time predictive manner were constructed. A higher area under the receiver operating characteristic curve (AUROC) was observed in quantified intraoperative circulation data models (0.801 [95% CI, 0.733-0.869]) compared to manual intraoperative circulation assessment models (0.719 [95% CI, 0.641-0.797]) in PLOS prediction.

Conclusion: Machine learning algorithms facilitated quantification of intraoperative circulation data. The developed real-time quantified intraoperative circulation prediction models based on this quantification offer a potential strategy to optimize intraoperative circulation management and mitigate PLOS following head and neck free flap reconstruction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Oncology
Frontiers in Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
6.20
自引率
10.60%
发文量
6641
审稿时长
14 weeks
期刊介绍: Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信