Intraoperative circulation predict prolonged length of stay after head and neck free flap reconstruction: a retrospective study based on machine learning.
{"title":"Intraoperative circulation predict prolonged length of stay after head and neck free flap reconstruction: a retrospective study based on machine learning.","authors":"Zhongqi Liu, Jinbei Wen, Yingzhen Chen, Bin Zhou, Minghui Cao, Mingyan Guo","doi":"10.3389/fonc.2024.1473447","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Head and neck free flap reconstruction presents challenges in managing intraoperative circulation, potentially leading to prolonged length of stay (PLOS). Limited research exists on the associations between intraoperative circulation and PLOS given the difficulty of manual quantification of intraoperative circulation time-series data. Therefore, this study aimed to quantify intraoperative circulation data and investigate its association with PLOS after free flap reconstruction utilizing machine learning algorithms.</p><p><strong>Methods: </strong>804 patients who underwent head and neck free flap reconstruction between September 2019 and February 2021 were included. Machine learning tools (Fourier transform, et al.) were utilized to extract features to quantify intraoperative circulation data. To compare the accuracy of quantified intraoperative circulation and manual intraoperative circulation assessments in the PLOS prediction, predictive models based on these 2 assessment methods were developed and validated.</p><p><strong>Results: </strong>Intraoperative circulation was quantified and a total of 114 features were extracted from intraoperative circulation data. Quantified intraoperative circulation models with a real-time predictive manner were constructed. A higher area under the receiver operating characteristic curve (AUROC) was observed in quantified intraoperative circulation data models (0.801 [95% CI, 0.733-0.869]) compared to manual intraoperative circulation assessment models (0.719 [95% CI, 0.641-0.797]) in PLOS prediction.</p><p><strong>Conclusion: </strong>Machine learning algorithms facilitated quantification of intraoperative circulation data. The developed real-time quantified intraoperative circulation prediction models based on this quantification offer a potential strategy to optimize intraoperative circulation management and mitigate PLOS following head and neck free flap reconstruction.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"14 ","pages":"1473447"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1473447","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Head and neck free flap reconstruction presents challenges in managing intraoperative circulation, potentially leading to prolonged length of stay (PLOS). Limited research exists on the associations between intraoperative circulation and PLOS given the difficulty of manual quantification of intraoperative circulation time-series data. Therefore, this study aimed to quantify intraoperative circulation data and investigate its association with PLOS after free flap reconstruction utilizing machine learning algorithms.
Methods: 804 patients who underwent head and neck free flap reconstruction between September 2019 and February 2021 were included. Machine learning tools (Fourier transform, et al.) were utilized to extract features to quantify intraoperative circulation data. To compare the accuracy of quantified intraoperative circulation and manual intraoperative circulation assessments in the PLOS prediction, predictive models based on these 2 assessment methods were developed and validated.
Results: Intraoperative circulation was quantified and a total of 114 features were extracted from intraoperative circulation data. Quantified intraoperative circulation models with a real-time predictive manner were constructed. A higher area under the receiver operating characteristic curve (AUROC) was observed in quantified intraoperative circulation data models (0.801 [95% CI, 0.733-0.869]) compared to manual intraoperative circulation assessment models (0.719 [95% CI, 0.641-0.797]) in PLOS prediction.
Conclusion: Machine learning algorithms facilitated quantification of intraoperative circulation data. The developed real-time quantified intraoperative circulation prediction models based on this quantification offer a potential strategy to optimize intraoperative circulation management and mitigate PLOS following head and neck free flap reconstruction.
期刊介绍:
Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.