{"title":"Influence of age and gender on gait kinematics of pelvis and hip in healthy adults aged 19-60 years.","authors":"Rajani Mullerpatan, Triveni Shetty, Bela Agarwal","doi":"10.3389/fbioe.2024.1515583","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pelvic and hip motion are pivotal in maintaining postural control and energy efficient gait. An insight into influence of age and gender on the coupled motion of hip and pelvis in gait-cycle will guide clinical rehabilitation strategies and pertinent technology-design for specific age-groups. Therefore, present study evaluated pelvic and hip-joint gait kinematics in healthy females and males across adult-hood.</p><p><strong>Methods: </strong>Following signed-informed consent, pelvic and hip kinematics in 3-planes during stance-phase of gait were measured using 12-camera motion system and 2 force-plates, in 200 healthy Indian female and male volunteers (19-60years) stratified into 4-groups (19-30 years; 31-40 years; 41-50years; 51-60 years).</p><p><strong>Results: </strong>With advancing age, males and females demonstrated a gradual rise in hip adduction (p < 0.01) in coronal plane. Sagittal plane pelvic and hip kinematics did not change with advancing age among males whereas females above 30 years Demonstrated greater pelvic drop (49%), pelvic tilt (35%) and hip adduction (69%) compared to females below 30 years (p < 0.01). In comparison to males, females demonstrated greater peak anterior pelvic tilt (32%), greater pelvic hike (28%) and protraction (28%) in 50-60 years age-group (p < 0.05). Females across all age-groups demonstrated greater hip adduction compared to males (p < 0.05).</p><p><strong>Conclusion: </strong>Present findings add age and gender characterized gait-kinematics data of healthy adults from the most populous country to the existing 3-D data of gait from different populations. Clinicians and engineers, can leverage this knowledge of changing gait kinematics of healthy adults to design specific therapeutic strategies for aging men and women to optimize gait kinematics and advance design and development of locomotor technology suitable for people with rehabilitation needs across the globe.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1515583"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1515583","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Pelvic and hip motion are pivotal in maintaining postural control and energy efficient gait. An insight into influence of age and gender on the coupled motion of hip and pelvis in gait-cycle will guide clinical rehabilitation strategies and pertinent technology-design for specific age-groups. Therefore, present study evaluated pelvic and hip-joint gait kinematics in healthy females and males across adult-hood.
Methods: Following signed-informed consent, pelvic and hip kinematics in 3-planes during stance-phase of gait were measured using 12-camera motion system and 2 force-plates, in 200 healthy Indian female and male volunteers (19-60years) stratified into 4-groups (19-30 years; 31-40 years; 41-50years; 51-60 years).
Results: With advancing age, males and females demonstrated a gradual rise in hip adduction (p < 0.01) in coronal plane. Sagittal plane pelvic and hip kinematics did not change with advancing age among males whereas females above 30 years Demonstrated greater pelvic drop (49%), pelvic tilt (35%) and hip adduction (69%) compared to females below 30 years (p < 0.01). In comparison to males, females demonstrated greater peak anterior pelvic tilt (32%), greater pelvic hike (28%) and protraction (28%) in 50-60 years age-group (p < 0.05). Females across all age-groups demonstrated greater hip adduction compared to males (p < 0.05).
Conclusion: Present findings add age and gender characterized gait-kinematics data of healthy adults from the most populous country to the existing 3-D data of gait from different populations. Clinicians and engineers, can leverage this knowledge of changing gait kinematics of healthy adults to design specific therapeutic strategies for aging men and women to optimize gait kinematics and advance design and development of locomotor technology suitable for people with rehabilitation needs across the globe.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.