Plant growth promotion via priming with volatile organic compounds emitted from Bacillus vallismortis strain EXTN-1.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1524888
Swarnalee Dutta, Kotnala Balaraju, Soh-Young Oh, Mi-Hyun Lee, Se Weon Lee, Yong Hwan Lee, Kyungseok Park
{"title":"Plant growth promotion via priming with volatile organic compounds emitted from <i>Bacillus vallismortis</i> strain EXTN-1.","authors":"Swarnalee Dutta, Kotnala Balaraju, Soh-Young Oh, Mi-Hyun Lee, Se Weon Lee, Yong Hwan Lee, Kyungseok Park","doi":"10.3389/fmicb.2024.1524888","DOIUrl":null,"url":null,"abstract":"<p><p>Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain <i>Bacillus vallismortis</i> (EXTN-1) on tobacco plant growth is dependent on the culture media used. The VOCs released from sugar-rich media such as potato dextrose agar (PDA) and King's B (KB) media were highly effective. However, exposure to VOCs from nutrient agar (NA), tryptic soy agar (TSA), and Luria-Bertani (LB) resulted in chlorosis and stunted plant growth. This effect was caused by the discharge of a large amount of ammonia that altered the pH of the plant growth media. Seedlings exposed to VOCs for 10 days exhibited improved growth even after the VOCs were eliminated under greenhouse conditions. Priming of seeds with VOCs for 24 and 48 h induced higher growth than the untreated control, and seeds with 48 h exposure were better as compared to 24 h treatment. Chemical characterization of VOCs emitted by EXTN-1 in different media using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) showed the presence of 2,3-butanedione and monoxime in all spectra. However, 1-butanol was the prominent peak in VOC of EXTN-1 grown in KB and NA, while acetoin was highest in PDA, followed by KB. Heneicosane and benzaldehyde were exclusively produced in NA media, and these synthetic compounds improved growth in the I-plate assay. This work indicates that VOCs released from EXTN-1 are important for the growth-promoting effect of EXTN-1.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1524888"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760595/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1524888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile organic compounds (VOCs) produced by potential plant growth-promoting rhizobacteria (PGPR) play an important role in plant interactions. However, the mechanisms underlying this phenomenon are not well understood. Our findings show that the influence of VOCs from the PGPR strain Bacillus vallismortis (EXTN-1) on tobacco plant growth is dependent on the culture media used. The VOCs released from sugar-rich media such as potato dextrose agar (PDA) and King's B (KB) media were highly effective. However, exposure to VOCs from nutrient agar (NA), tryptic soy agar (TSA), and Luria-Bertani (LB) resulted in chlorosis and stunted plant growth. This effect was caused by the discharge of a large amount of ammonia that altered the pH of the plant growth media. Seedlings exposed to VOCs for 10 days exhibited improved growth even after the VOCs were eliminated under greenhouse conditions. Priming of seeds with VOCs for 24 and 48 h induced higher growth than the untreated control, and seeds with 48 h exposure were better as compared to 24 h treatment. Chemical characterization of VOCs emitted by EXTN-1 in different media using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) showed the presence of 2,3-butanedione and monoxime in all spectra. However, 1-butanol was the prominent peak in VOC of EXTN-1 grown in KB and NA, while acetoin was highest in PDA, followed by KB. Heneicosane and benzaldehyde were exclusively produced in NA media, and these synthetic compounds improved growth in the I-plate assay. This work indicates that VOCs released from EXTN-1 are important for the growth-promoting effect of EXTN-1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信