Dual role of Xenopus Odf2 in multiciliated cell patterning and differentiation

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Aude Nommick , Alexandre Chuyen , Raphael Clément , Virginie Thomé , Fabrice Daian , Olivier Rosnet , Fabrice Richard , Nicolas Brouilly , Etienne Loiseau , Camille Boutin , Laurent Kodjabachian
{"title":"Dual role of Xenopus Odf2 in multiciliated cell patterning and differentiation","authors":"Aude Nommick ,&nbsp;Alexandre Chuyen ,&nbsp;Raphael Clément ,&nbsp;Virginie Thomé ,&nbsp;Fabrice Daian ,&nbsp;Olivier Rosnet ,&nbsp;Fabrice Richard ,&nbsp;Nicolas Brouilly ,&nbsp;Etienne Loiseau ,&nbsp;Camille Boutin ,&nbsp;Laurent Kodjabachian","doi":"10.1016/j.ydbio.2025.01.014","DOIUrl":null,"url":null,"abstract":"<div><div>In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the <em>Xenopus</em> embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level. Like in other species, <em>Xenopus</em> Odf2 localized to the basal foot of basal bodies. Consistently, Odf2 morpholino-mediated knockdown impaired basal foot morphogenesis. Consequently, the rate of microtubule nucleation by Odf2-deficient basal bodies was reduced, leading to cilia disorientation, reduced beating, and ultimately altered flow production across the embryo. Furthermore, we show that Odf2 is required to maintain MCC motility and homotypic repulsion prior to their emergence into the surface layer. Our data suggest that Odf2 promotes MCC spacing via its role in the modulation of cytoplasmic microtubule dynamics. Mathematical simulations confirmed that reduced migration speed alters the spacing order of MCCs. This study provides a striking example of coupling between organizational scales by a unique effector.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"520 ","pages":"Pages 224-238"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160625000260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level. Like in other species, Xenopus Odf2 localized to the basal foot of basal bodies. Consistently, Odf2 morpholino-mediated knockdown impaired basal foot morphogenesis. Consequently, the rate of microtubule nucleation by Odf2-deficient basal bodies was reduced, leading to cilia disorientation, reduced beating, and ultimately altered flow production across the embryo. Furthermore, we show that Odf2 is required to maintain MCC motility and homotypic repulsion prior to their emergence into the surface layer. Our data suggest that Odf2 promotes MCC spacing via its role in the modulation of cytoplasmic microtubule dynamics. Mathematical simulations confirmed that reduced migration speed alters the spacing order of MCCs. This study provides a striking example of coupling between organizational scales by a unique effector.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信