Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects.

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Arshdeep Kaur, Rohit, Khadga Raj Aran
{"title":"Unraveling the dual role of bilirubin in neurological Diseases: A Comprehensive exploration of its neuroprotective and neurotoxic effects.","authors":"Arshdeep Kaur, Rohit, Khadga Raj Aran","doi":"10.1016/j.brainres.2025.149472","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS). Additionally, it contributes to immune regulation through microglial activation, cytokine release, complement system interception, fragment crystallization (Fc) receptor modulation, and major histocompatibility complex (MHC II) expression modification, which lower the risk of inflammatory and autoimmune reactions in the central nervous system (CNS). As per the literature, serum bilirubin concentrations are associated with CNS diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, schizophrenia and kernicterus spectrum disorder (KSD), which causes neuronal damage, especially in regions like the basal ganglia and cerebellum, which causes movement abnormalities and cognitive deficits. The aim of this article is to explore the dual role of bilirubin as neuroprotective and neurotoxic, essential for establishing effective therapeutic outcomes for neurodegenerative diseases by looking at its cellular mechanisms and discussing how bilirubin's antioxidant properties can shield neurons and, in some situations, may induce oxidative stress and apoptosis.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149472"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.brainres.2025.149472","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS). Additionally, it contributes to immune regulation through microglial activation, cytokine release, complement system interception, fragment crystallization (Fc) receptor modulation, and major histocompatibility complex (MHC II) expression modification, which lower the risk of inflammatory and autoimmune reactions in the central nervous system (CNS). As per the literature, serum bilirubin concentrations are associated with CNS diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, schizophrenia and kernicterus spectrum disorder (KSD), which causes neuronal damage, especially in regions like the basal ganglia and cerebellum, which causes movement abnormalities and cognitive deficits. The aim of this article is to explore the dual role of bilirubin as neuroprotective and neurotoxic, essential for establishing effective therapeutic outcomes for neurodegenerative diseases by looking at its cellular mechanisms and discussing how bilirubin's antioxidant properties can shield neurons and, in some situations, may induce oxidative stress and apoptosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Research
Brain Research 医学-神经科学
CiteScore
5.90
自引率
3.40%
发文量
268
审稿时长
47 days
期刊介绍: An international multidisciplinary journal devoted to fundamental research in the brain sciences. Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed. With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信