p16INK4a promoted progress of MCT induced pulmonary hypertension via maintaining redox balance and autophagy pathway.

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fen Wang, Wang Xiao, Jianwei Li, Zhixuan Zhang, Xiaodong Zhang, Jialong Sun, Yao Zhong, Xiaoyan Wang, Ruijuan Zhuang, Xin Gu
{"title":"p16<sup>INK4a</sup> promoted progress of MCT induced pulmonary hypertension via maintaining redox balance and autophagy pathway.","authors":"Fen Wang, Wang Xiao, Jianwei Li, Zhixuan Zhang, Xiaodong Zhang, Jialong Sun, Yao Zhong, Xiaoyan Wang, Ruijuan Zhuang, Xin Gu","doi":"10.1016/j.bbrc.2025.151385","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and elevated pulmonary arterial pressure. Currently, pathogenesis of PAH remains poorly understood, and therapeutic options are limited. In this study, we aimed to explore role of p16INK4A (p16) in the development of PAH using mouse model induced by monocrotaline (MCT). We utilized p16 knockout mice to investigate protective effects on PAH pathophysiology. Histopathological analysis, Western blotting, and transcriptomic profiling revealed that p16 knockout significantly reduced pathological changes associated with MCT-induced PAH, including vascular remodeling and pulmonary fibrosis. These effects were correlated with enhanced autophagy and balanced oxidative stress response following p16 deletion. Transcriptome analysis indicated that the regulatory impact of p16 on autophagy and oxidative stress was primarily mediated through its modulation of oxidative phosphorylation and glutathione metabolic pathways. Our findings provide new insights in PAH pathogenesis and suggest that targeting p16 may offer novel therapeutic approach for treating PAH. These results highlighted that p16 could be a therapeutic target for modulating autophagy and oxidative stress in PAH, paving the way for future research in this area.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"749 ","pages":"151385"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2025.151385","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary arterial hypertension (PAH) is a disease characterized by increased pulmonary vascular resistance and elevated pulmonary arterial pressure. Currently, pathogenesis of PAH remains poorly understood, and therapeutic options are limited. In this study, we aimed to explore role of p16INK4A (p16) in the development of PAH using mouse model induced by monocrotaline (MCT). We utilized p16 knockout mice to investigate protective effects on PAH pathophysiology. Histopathological analysis, Western blotting, and transcriptomic profiling revealed that p16 knockout significantly reduced pathological changes associated with MCT-induced PAH, including vascular remodeling and pulmonary fibrosis. These effects were correlated with enhanced autophagy and balanced oxidative stress response following p16 deletion. Transcriptome analysis indicated that the regulatory impact of p16 on autophagy and oxidative stress was primarily mediated through its modulation of oxidative phosphorylation and glutathione metabolic pathways. Our findings provide new insights in PAH pathogenesis and suggest that targeting p16 may offer novel therapeutic approach for treating PAH. These results highlighted that p16 could be a therapeutic target for modulating autophagy and oxidative stress in PAH, paving the way for future research in this area.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信