Transcriptome analysis reveals significant discrepancies between two in vitro models of host-trematode interaction

IF 2.1 3区 医学 Q2 PARASITOLOGY
Ekaterina A. Lishai , Dmitry V. Ponomarev , Oxana G. Zaparina , Maria Y. Pakharukova
{"title":"Transcriptome analysis reveals significant discrepancies between two in vitro models of host-trematode interaction","authors":"Ekaterina A. Lishai ,&nbsp;Dmitry V. Ponomarev ,&nbsp;Oxana G. Zaparina ,&nbsp;Maria Y. Pakharukova","doi":"10.1016/j.actatropica.2025.107534","DOIUrl":null,"url":null,"abstract":"<div><div>Cell models emulating an <em>in vitro</em> parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate <em>in vitro</em> model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand. The epidemiologically important foodborne trematode <em>Opisthorchis felineus</em> parasitizes bile ducts of fish-eating mammals, including humans. The human infection leads to chronic inflammation and biliary intraepithelial neoplasia, which is considered precancerous. This study was aimed at evaluating two useful <em>in vitro</em> research tools based on human cholangiocytes’ (H69 cells’) response to the trematode: coculture with live worms or incubation with parasite-derived excretory–secretory products (ESPs). We assessed H69 cells’ proliferation, migration rate, cell cycle shift, and cytokine production. We also conducted genome-wide transcriptome analysis to identify affected cascades of regulatory signaling events. We demonstrated significant discrepancies between the two <em>in vitro</em> models of host–parasite interactions. Although differences between the two models in cell proliferation and cell migration rate were weak, there were substantial differences in the production and release of cytokines IL-6, IL-4, and TNF. A total of 144 genes in H69 cells were found to be differentially expressed after coculture with live worms, whereas 537 genes were differentially expressed after exposure to ESPs. Transcriptomic analysis revealed only 11 common upregulated genes and six common downregulated genes. Functional enrichment analysis of the gene sets also revealed some striking differences between the <em>in vitro</em> models. Our data will contribute to a deeper understanding of biliary neoplasia associated with liver fluke infection. This study underscores the importance of choosing an appropriate <em>in vitro</em> model to accurately emulate host–parasite interactions. The data also highlight the need for further investigation into the pathogenesis of the precancerous biliary lesions associated with liver fluke infection.</div></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":"262 ","pages":"Article 107534"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X25000142","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell models emulating an in vitro parasitic infection can greatly improve our understanding of helminthiases. Nonetheless, it remains challenging to select an appropriate in vitro model to study molecular pathogenesis of infections by trematodes having a complex life cycle. Therefore, adequate models are in high demand. The epidemiologically important foodborne trematode Opisthorchis felineus parasitizes bile ducts of fish-eating mammals, including humans. The human infection leads to chronic inflammation and biliary intraepithelial neoplasia, which is considered precancerous. This study was aimed at evaluating two useful in vitro research tools based on human cholangiocytes’ (H69 cells’) response to the trematode: coculture with live worms or incubation with parasite-derived excretory–secretory products (ESPs). We assessed H69 cells’ proliferation, migration rate, cell cycle shift, and cytokine production. We also conducted genome-wide transcriptome analysis to identify affected cascades of regulatory signaling events. We demonstrated significant discrepancies between the two in vitro models of host–parasite interactions. Although differences between the two models in cell proliferation and cell migration rate were weak, there were substantial differences in the production and release of cytokines IL-6, IL-4, and TNF. A total of 144 genes in H69 cells were found to be differentially expressed after coculture with live worms, whereas 537 genes were differentially expressed after exposure to ESPs. Transcriptomic analysis revealed only 11 common upregulated genes and six common downregulated genes. Functional enrichment analysis of the gene sets also revealed some striking differences between the in vitro models. Our data will contribute to a deeper understanding of biliary neoplasia associated with liver fluke infection. This study underscores the importance of choosing an appropriate in vitro model to accurately emulate host–parasite interactions. The data also highlight the need for further investigation into the pathogenesis of the precancerous biliary lesions associated with liver fluke infection.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信