Expression and role of CTHRC1 in inflammatory bowel disease in children.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-01-25 DOI:10.1007/s10616-025-00705-x
Heng Tang, Xiang Gao, Zhaofang Wu, Jia Chen, Li Chen, Xiang Du
{"title":"Expression and role of CTHRC1 in inflammatory bowel disease in children.","authors":"Heng Tang, Xiang Gao, Zhaofang Wu, Jia Chen, Li Chen, Xiang Du","doi":"10.1007/s10616-025-00705-x","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10616-025-00705-x.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"44"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00705-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel disease (IBD) is a chronic, progressive, immune-mediated, gastrointestinal inflammatory disease with increasing occurrences in children. Collagen triple helix repeat containing 1 (CTHRC1), a migration-promoting protein, acts as a tumor-promoting factor in malignant tumors. However, functions and mechanisms of CTHRC1 in children with IBD remain unclear. This study aimed to determine the effects and mechanisms of CTHRC1 on dextran sodium sulfate (DSS)-treated HT-29 cells. HT-29 control cells were exposed to 2% DSS to develop an in vitro IBD model. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to assess CTHRC1 expression in serum of children with IBD and HT-29 cells. Cell viability and apoptosis were assessed using MTT and flow cytometry (FCM). Expressions of cleaved-Caspase3 and Caspase3 were determined by western blotting. The cytokine production (TNF-α, IL-1β and IL-6) in HT-29 cells was measured by ELISA assay. Activation or inactivation of NF-κB signaling pathway was confirmed by western blot assay. Results showed that CTHRC1 expression was upregulated in the IBD serum and HT-29 control cells. The level of CTHRC1 was lower in CTHRC1-siRNA transfected cells than in control siRNA-treated cells. Notably, silence of CTHRC1 markedly enhanced HT-29 cells viability, decreased apoptotic cells, suppressed cleaved-Caspase3 expression, inhibited cleaved-Caspase3/Caspase3 ratio, reduced the production of inflammatory cytokines, and blocked NF-κB signaling pathway induced by DSS. However, these effects were reversed following diprovocim treatment. Thus, that knockdown of CTHRC1 alleviated DSS-induced HT-29 cell injury by inhibiting the NF-κB signaling pathway in vitro, providing a new therapeutic target for IBD in children.

Supplementary information: The online version contains supplementary material available at 10.1007/s10616-025-00705-x.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信