Mitigating dithiothreitol interference to gold/thiol interface in electrochemical detection of cathepsin B activity toward multiplex protease analysis

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Bingun Habarakadage , Sabari Rajendran , Zhaoyang Ren , Morgan J. Anderson , Jessica Koehne , Lingaraju Gorla , Shunya Morita , Sara Wu , Duy H. Hua , Jun Li
{"title":"Mitigating dithiothreitol interference to gold/thiol interface in electrochemical detection of cathepsin B activity toward multiplex protease analysis","authors":"Bingun Habarakadage ,&nbsp;Sabari Rajendran ,&nbsp;Zhaoyang Ren ,&nbsp;Morgan J. Anderson ,&nbsp;Jessica Koehne ,&nbsp;Lingaraju Gorla ,&nbsp;Shunya Morita ,&nbsp;Sara Wu ,&nbsp;Duy H. Hua ,&nbsp;Jun Li","doi":"10.1016/j.bios.2025.117193","DOIUrl":null,"url":null,"abstract":"<div><div>Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity. Cleavage of these peptide substrates by proteases leads to an exponential decay in the alternating current voltammetry (ACV) signal. The protease activity is represented by the inverse of the decay time constant (1/τ), which is equal to (k<sub>cat</sub>/K<sub>M</sub>)[CB] based on the heterogeneous Michaelis-Menton model. However, the thiol/Au chemisorption linking AEF-peptide to gold electrodes is susceptible to interference by the protease activation reagent dithiothreitol (DTT), causing the peptides to desorb from the Au surface during continuous ACV measurement. This induces a false signal decay, masking the protease activity and reducing the sensor sensitivity. To address this, DTT is removed after activating CB using centrifugal filtration while EDTA is incorporated to maintain the enzyme activity. This allows accurate CB proteolysis kinetics and clarifies the roles of EDTA and DTT in activation. The intrinsic substrate-dependent cleavage by CB to three different peptide substrates has been demonstrated with the MEA chip, showcasing the potential for rapid activity profiling of multiple proteases. The study highlights the importance of understanding the interference of active bioreagents to the thiol/Au interface in broad redox-tagged electrochemical biosensors.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"Article 117193"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000673","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity. Cleavage of these peptide substrates by proteases leads to an exponential decay in the alternating current voltammetry (ACV) signal. The protease activity is represented by the inverse of the decay time constant (1/τ), which is equal to (kcat/KM)[CB] based on the heterogeneous Michaelis-Menton model. However, the thiol/Au chemisorption linking AEF-peptide to gold electrodes is susceptible to interference by the protease activation reagent dithiothreitol (DTT), causing the peptides to desorb from the Au surface during continuous ACV measurement. This induces a false signal decay, masking the protease activity and reducing the sensor sensitivity. To address this, DTT is removed after activating CB using centrifugal filtration while EDTA is incorporated to maintain the enzyme activity. This allows accurate CB proteolysis kinetics and clarifies the roles of EDTA and DTT in activation. The intrinsic substrate-dependent cleavage by CB to three different peptide substrates has been demonstrated with the MEA chip, showcasing the potential for rapid activity profiling of multiple proteases. The study highlights the importance of understanding the interference of active bioreagents to the thiol/Au interface in broad redox-tagged electrochemical biosensors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信