{"title":"In-Situ Construction of LiCl-Rich Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Anode.","authors":"Zhen Chen, Xi Wang, Shengjie Qian, Hai-Peng Liang, Minghua Chen, Zexiang Shen","doi":"10.1002/cssc.202402638","DOIUrl":null,"url":null,"abstract":"<p><p>In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl5 symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm-2 with an areal capacity of 1 mAh cm-2. Full-cells employing Li@MoCl5 exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm-2). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402638"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402638","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl5 symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm-2 with an areal capacity of 1 mAh cm-2. Full-cells employing Li@MoCl5 exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm-2). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology