In-Situ Construction of LiCl-Rich Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Anode.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-25 DOI:10.1002/cssc.202402638
Zhen Chen, Xi Wang, Shengjie Qian, Hai-Peng Liang, Minghua Chen, Zexiang Shen
{"title":"In-Situ Construction of LiCl-Rich Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Anode.","authors":"Zhen Chen, Xi Wang, Shengjie Qian, Hai-Peng Liang, Minghua Chen, Zexiang Shen","doi":"10.1002/cssc.202402638","DOIUrl":null,"url":null,"abstract":"<p><p>In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl5 symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm-2 with an areal capacity of 1 mAh cm-2. Full-cells employing Li@MoCl5 exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm-2). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402638"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402638","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the pursuit of high-energy-density lithium metal batteries (LMBs), the development of stable solid electrolyte interphase (SEI) is critical to address issues such as lithium dendrite growth and low Coulombic efficiency. Herein, we propose a facile strategy for the in-situ fabrication of a LiCl-rich artificial SEI layer on Li surfaces through reaction of MoCl5 with Li (Li@MoCl5). The resulting artificial SEI significantly enhances the uniformity of Li deposition, effectively suppresses dendrite formation, and improves electrochemical performance. As a result, Li@MoCl5 symmetric cells demonstrate remarkable stability, achieving continuous cycling of 4200 h under a high current density of 10 mA cm-2 with an areal capacity of 1 mAh cm-2. Full-cells employing Li@MoCl5 exhibit superior cycling stability and rate capability, even at high cathode loading (17 mg cm-2). These results highlight the potential of this interface engineering strategy for advanced practical application of LMBs.

在追求高能量密度锂金属电池(LMB)的过程中,开发稳定的固体电解质相(SEI)对于解决锂枝晶生长和库仑效率低等问题至关重要。在此,我们提出了一种简便的策略,通过 MoCl5 与 Li(Li@MoCl5)反应,在锂表面原位制备富含 LiCl 的人工 SEI 层。由此产生的人工 SEI 能显著提高锂沉积的均匀性,有效抑制枝晶的形成,并改善电化学性能。因此,Li@MoCl5 对称电池表现出卓越的稳定性,在 10 mA cm-2 的高电流密度下可实现 4200 小时的连续循环,平均容量为 1 mAh cm-2。采用 Li@MoCl5 的全电池表现出卓越的循环稳定性和速率能力,即使在阴极负载较高(17 毫克/厘米-2)的情况下也是如此。这些结果凸显了这种界面工程策略在 LMB 高级实际应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信