Bi-S Bond Mediated Direct Z-Scheme BiOCl/Cu2SnS3 Heterostructure for Efficient Photocatalytic Hydrogen Generation.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-25 DOI:10.1002/cssc.202402655
Dipendu Sarkar, Maitrayee Biswas, Swarup Ghosh, Joydeep Chowdhury, Biswarup Satpati, Srabanti Ghosh
{"title":"Bi-S Bond Mediated Direct Z-Scheme BiOCl/Cu2SnS3 Heterostructure for Efficient Photocatalytic Hydrogen Generation.","authors":"Dipendu Sarkar, Maitrayee Biswas, Swarup Ghosh, Joydeep Chowdhury, Biswarup Satpati, Srabanti Ghosh","doi":"10.1002/cssc.202402655","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation. The improved hydrogen generation rate (HGR) was primarily due to an interfacial Bi-S bond formation, which facilitates the creation of direct Z-scheme heterojunction and an internal electric field at the interface, promoting efficient charge transfer between BiOCl and CTS. Moreover, due to the amalgamation of Bi-S bond formation and interfacial electric field, the optimized BCTS-5% heterostructure exhibited a high HGR of 8.27 mmol·g⁻¹·h⁻¹, and an apparent quantum yield (AQY) of 61%, ~ 4 times higher than pristine BiOCl. First-principles density functional theory (DFT) calculations further revealed the presence of a Bi-S bond with a bond length of ~2.85 Å and a minimal work function of 2.37 eV for the heterostructure, both of which are critical for enhancing H2 generation efficiency.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402655"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402655","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation. The improved hydrogen generation rate (HGR) was primarily due to an interfacial Bi-S bond formation, which facilitates the creation of direct Z-scheme heterojunction and an internal electric field at the interface, promoting efficient charge transfer between BiOCl and CTS. Moreover, due to the amalgamation of Bi-S bond formation and interfacial electric field, the optimized BCTS-5% heterostructure exhibited a high HGR of 8.27 mmol·g⁻¹·h⁻¹, and an apparent quantum yield (AQY) of 61%, ~ 4 times higher than pristine BiOCl. First-principles density functional theory (DFT) calculations further revealed the presence of a Bi-S bond with a bond length of ~2.85 Å and a minimal work function of 2.37 eV for the heterostructure, both of which are critical for enhancing H2 generation efficiency.

光催化技术在太阳能驱动的氢气(H2)生产方面的发展仍然受到开发高效光催化剂的若干挑战的阻碍。其中一个关键问题是电荷载流子的快速重组,这极大地限制了 BiOCl 和 Cu2SnS3 量子点(CTS QDs)等材料的光收集能力,尽管它们分别具有较快的电荷迁移率和量子约束效应。本文通过在 BiOCl 二维纳米片(NSs)上负载 CTS QDs,合成了一种 BiOCl/CTS (BCTS) 异质结构,该异质结构在可见光照射下表现出优异的光催化活性。氢气生成率(HGR)的提高主要是由于界面上形成了 Bi-S 键,这有利于在界面上形成直接的 Z 型异质结和内电场,促进了 BiOCl 和 CTS 之间电荷的有效转移。此外,由于 Bi-S 键的形成和界面电场的结合,优化的 BCTS-5% 异质结构显示出 8.27 mmol-g-¹-h-¹ 的高 HGR 值和 61% 的表观量子产率 (AQY),比原始 BiOCl 高出约 4 倍。第一原理密度泛函理论(DFT)计算进一步揭示了异质结构中存在键长约为 2.85 Å 的 Bi-S 键和 2.37 eV 的最小功函数,这两个因素对于提高 H2 生成效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信