Yu-Shan Lin, Javier Lopez-Cabrelles, Chia-Her Lin, Shuhei Furukawa
{"title":"Frameworks Construction with Rhodium-Organic Cuboctahedra via Rigid Linker Incorporation.","authors":"Yu-Shan Lin, Javier Lopez-Cabrelles, Chia-Her Lin, Shuhei Furukawa","doi":"10.1002/asia.202401456","DOIUrl":null,"url":null,"abstract":"<p><p>The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs). The SBB approach offers a powerful strategy for the deliberate design of macroscale materials, ranging from soft materials such as gels, polymers, and membranes to crystalline frameworks. However, achieving highly ordered structures with robust and air-stable rhodium-based MOPs (RhMOPs) presents a significant challenge. To investigate how to control the precise spatial distribution of RhMOPs as SBBs for constructing crystalline extended networks, here, we present a strategy for synthesizing MOFs by coordinating RhMOPs with rigid bridging linkers 1,4-diazabicyclo[2.2.2]octane (dabco). The resulting crystalline framework exhibited high microporosity and four times higher adsorption capacity than the parent MOP solids.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401456"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401456","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The architectural characteristics of metal-organic frameworks (MOFs) can be examined through their net topology, which consists of nodes and linkers. A node's connectivity and site symmetry are likely the key elements influencing the net topology of MOFs. Metal-organic polyhedra (MOPs) function effectively as nodes when used as supermolecular building blocks (SBBs). The SBB approach offers a powerful strategy for the deliberate design of macroscale materials, ranging from soft materials such as gels, polymers, and membranes to crystalline frameworks. However, achieving highly ordered structures with robust and air-stable rhodium-based MOPs (RhMOPs) presents a significant challenge. To investigate how to control the precise spatial distribution of RhMOPs as SBBs for constructing crystalline extended networks, here, we present a strategy for synthesizing MOFs by coordinating RhMOPs with rigid bridging linkers 1,4-diazabicyclo[2.2.2]octane (dabco). The resulting crystalline framework exhibited high microporosity and four times higher adsorption capacity than the parent MOP solids.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).