{"title":"SPONGE-FEP: An Automated Relative Binding Free Energy Calculation Accelerated by Selective Integrated Tempering Sampling.","authors":"Yijie Xia, Xiaohan Lin, Jinyuan Hu, Lijiang Yang, Yi Qin Gao","doi":"10.1021/acs.jctc.4c01486","DOIUrl":null,"url":null,"abstract":"<p><p>Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations. We first provide an overview of the workflow, which encompasses the generation of a perturbation map, alchemical free energy calculations, and cycle closure analysis. Two case studies were then performed to demonstrate the enhanced sampling of conformational states of ligands and proteins during the alchemical transformation process. The results show that the refined SITS method in SPONGE-FEP can significantly improve the sampling efficiency of rare events and the performance of RBFE predictions. Three series of comparative RBFE tests were conducted to demonstrate the accuracy of SPONGE-FEP, which is comparable to FEP+, using an average computation time of 4 h for a pair of ligands on an A100 GPU device.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations. We first provide an overview of the workflow, which encompasses the generation of a perturbation map, alchemical free energy calculations, and cycle closure analysis. Two case studies were then performed to demonstrate the enhanced sampling of conformational states of ligands and proteins during the alchemical transformation process. The results show that the refined SITS method in SPONGE-FEP can significantly improve the sampling efficiency of rare events and the performance of RBFE predictions. Three series of comparative RBFE tests were conducted to demonstrate the accuracy of SPONGE-FEP, which is comparable to FEP+, using an average computation time of 4 h for a pair of ligands on an A100 GPU device.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.