{"title":"Double Cross-linked Methacrylated Carboxymethyl Pea Starch Cryogels with Highly Compressive Elasticity and Hemostatic Function.","authors":"Yuqing Liu, Wen Zhong, Yongfeng Ai, Malcolm Xing","doi":"10.1021/acs.biomac.4c01080","DOIUrl":null,"url":null,"abstract":"<p><p>As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network. The second ionic cross-linking network enhanced the compressive strength and toughness dramatically but reduced the swelling ratios. Cryogels and sponges exhibited excellent compressive elasticity at low Ca<sup>2+</sup> concentrations (0.01 M). Cryogels became more plastic and dry sponges became rigid and brittle at high Ca<sup>2+</sup> concentrations. The cryogels have outstanding wet-thermal stability but are still degradable via enzymatic hydrolysis. All CM-ST-MA sponges showed excellent biocompatibility, hemocompatibility, and outstanding hemostasis in in vitro assays. In the in vivo mouse tail amputation model, both CM-ST-MA cryogels without or with Ca<sup>2+</sup> (0.01 M) reduced the blood loss and bleeding time significantly.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01080","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As an abundant renewable natural material, starch has attracted unprecedented interest in the biomedical field. Carboxylated starch particles have been investigated for topical hemostasis, but the powder may not provide physical protection or support for wounds. Here, we prepared macroporous cryogel sponges of methacrylated carboxymethyl starch (CM-ST-MA) containing a covalent and a calcium ionic double network. The second ionic cross-linking network enhanced the compressive strength and toughness dramatically but reduced the swelling ratios. Cryogels and sponges exhibited excellent compressive elasticity at low Ca2+ concentrations (0.01 M). Cryogels became more plastic and dry sponges became rigid and brittle at high Ca2+ concentrations. The cryogels have outstanding wet-thermal stability but are still degradable via enzymatic hydrolysis. All CM-ST-MA sponges showed excellent biocompatibility, hemocompatibility, and outstanding hemostasis in in vitro assays. In the in vivo mouse tail amputation model, both CM-ST-MA cryogels without or with Ca2+ (0.01 M) reduced the blood loss and bleeding time significantly.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.