Hyo Jae Jeon, Joo Hyung Lee, Ae Ji Park, Jeong-Mo Choi, Kyungtae Kang
{"title":"A Single Amino Acid Model for Hydrophobically Driven Liquid-Liquid Phase Separation.","authors":"Hyo Jae Jeon, Joo Hyung Lee, Ae Ji Park, Jeong-Mo Choi, Kyungtae Kang","doi":"10.1021/acs.biomac.4c01410","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior. Importantly, we elucidated the liquid-to-solid transition process, suggesting that it may be driven by a molecular mechanism different from that of LLPS. Fmoc-AA condensates showed promise for biomolecular enrichment and catalytic applications. This work provides significant insights into the molecular mechanisms of LLPS and the subsequent liquid-to-solid transition, offering a robust platform for future studies related to protocells and protein aggregation diseases.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01410","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes fluorenylmethoxycarbonyl (Fmoc)-protected single amino acids (Fmoc-AAs) as a minimalistic model system to investigate liquid-liquid phase separation (LLPS) and the elusive liquid-to-solid transition of condensates. We demonstrated that Fmoc-AAs exhibit LLPS depending on the pH and ionic strength, primarily driven by hydrophobic interactions. Systematic examination of the conditions under which each Fmoc-AA undergoes LLPS revealed distinct residue-dependent trends in the critical concentrations and phase behavior. Importantly, we elucidated the liquid-to-solid transition process, suggesting that it may be driven by a molecular mechanism different from that of LLPS. Fmoc-AA condensates showed promise for biomolecular enrichment and catalytic applications. This work provides significant insights into the molecular mechanisms of LLPS and the subsequent liquid-to-solid transition, offering a robust platform for future studies related to protocells and protein aggregation diseases.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.