{"title":"Microfilm-Formation of High-Viscosity Liquids by Blade Shear Coating.","authors":"Zhongping Sun, Jiaqi Zhang, Zheng Xu, Xiaodong Wang, Yonglin Jiao","doi":"10.1021/acsomega.4c08900","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of high-viscosity microfilms in designated regions is crucial for the performance and durability of MEMS devices. This paper presents a novel method for controllable film formation in the milli/micron region by blade coating. A microfilm can be formed without viscosity limitation, and the formation process can be monitored only via a one-dimensional force sensor. The dynamics of the blade-coating process are analyzed in detail. The experimental results indicate that the initial height of the blade gap is the determining factor of film thickness, whereas the film length can be adjusted individually by the scratching speed without influence on film thickness. Moreover, the tangential force varies obviously in different coating parameters while exhibiting a similar trend.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 2","pages":"2160-2166"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08900","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The distribution of high-viscosity microfilms in designated regions is crucial for the performance and durability of MEMS devices. This paper presents a novel method for controllable film formation in the milli/micron region by blade coating. A microfilm can be formed without viscosity limitation, and the formation process can be monitored only via a one-dimensional force sensor. The dynamics of the blade-coating process are analyzed in detail. The experimental results indicate that the initial height of the blade gap is the determining factor of film thickness, whereas the film length can be adjusted individually by the scratching speed without influence on film thickness. Moreover, the tangential force varies obviously in different coating parameters while exhibiting a similar trend.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.