Enhanced Corneal Repair with Hyaluronic Acid/Proanthocyanidins Nanoparticles.

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2025-01-10 eCollection Date: 2025-01-21 DOI:10.1021/acsomega.4c09159
Yalu Liu, Xing Ge, Xiaochen Wu, Lina Guan
{"title":"Enhanced Corneal Repair with Hyaluronic Acid/Proanthocyanidins Nanoparticles.","authors":"Yalu Liu, Xing Ge, Xiaochen Wu, Lina Guan","doi":"10.1021/acsomega.4c09159","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the therapeutic potential of hyaluronic acid/proanthocyanidin (HA/PAC) nanoparticles in treating alkali-induced corneal burns. Alkali burns are common ocular emergencies that can lead to severe vision impairment if not promptly and properly treated. The low water solubility of proanthocyanidins (PACs), which are potent antioxidant and anti-inflammatory agents, limits their bioavailability and therapeutic efficacy. To overcome this, hyaluronic acid (HA) was utilized as a carrier to form HA/PAC nanoparticles, enhancing PAC's solubility and bioavailability. The HA/PAC nanoparticles were characterized for morphology, granulometric distribution, hemolysis, and cytotoxicity, demonstrating high blood compatibility and noncytotoxicity. The <i>in vitro</i> antioxidant and anti-inflammatory capacities of HA/PAC were evaluated, showing enhanced activity compared to PAC alone. <i>In vivo</i> studies on C57 mice confirmed the accelerated healing of corneal injuries and reduced corneal opacity with HA/PAC treatment. Histopathological analysis and cytokine quantification further supported the anti-inflammatory and proregenerative effects of HA/PAC, suggesting its potential as an effective treatment for corneal alkali burns.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 2","pages":"2222-2230"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c09159","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the therapeutic potential of hyaluronic acid/proanthocyanidin (HA/PAC) nanoparticles in treating alkali-induced corneal burns. Alkali burns are common ocular emergencies that can lead to severe vision impairment if not promptly and properly treated. The low water solubility of proanthocyanidins (PACs), which are potent antioxidant and anti-inflammatory agents, limits their bioavailability and therapeutic efficacy. To overcome this, hyaluronic acid (HA) was utilized as a carrier to form HA/PAC nanoparticles, enhancing PAC's solubility and bioavailability. The HA/PAC nanoparticles were characterized for morphology, granulometric distribution, hemolysis, and cytotoxicity, demonstrating high blood compatibility and noncytotoxicity. The in vitro antioxidant and anti-inflammatory capacities of HA/PAC were evaluated, showing enhanced activity compared to PAC alone. In vivo studies on C57 mice confirmed the accelerated healing of corneal injuries and reduced corneal opacity with HA/PAC treatment. Histopathological analysis and cytokine quantification further supported the anti-inflammatory and proregenerative effects of HA/PAC, suggesting its potential as an effective treatment for corneal alkali burns.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信