{"title":"Biomimetic Air-Lifted Organ Culture System with a Protective Coverage Membrane for Full-Thickness Corneal Preservation.","authors":"Le Ma, Hongliang Jiang, Huan Wang, Ling Peng, Guoying Sun, Qiongyu Guo","doi":"10.1021/acsbiomaterials.4c02475","DOIUrl":null,"url":null,"abstract":"<p><p>Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation. Compared with conventional submerged and air-lifted corneal preservation methods, the air-lifted OC-P system remarkably improved the overall quality of the preserved corneas. These preserved corneas not only exhibited superior controllability of corneal swelling and extraordinary maintenance of the morphology and viability of all three types of corneal cells (i.e., corneal epithelium, keratocytes, and endothelium) but also demonstrated optimal optical, thermal, and mechanical properties. This air-lifted OC-P system presents a biomimetic strategy that provides a static and efficient method to replicate the corneal natural conditions for corneal preservation effectively.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective storage and utilization of limited donor corneal resources are in high demand to alleviate the shortage of donor corneal tissue. Here, we designed a static air-lifted organ culture system equipped with a protective coverage membrane, namely, an air-lifted OC-P system, to provide a biomimetic physiological environment for full-thickness corneal preservation. The air-lifted OC-P system features a unique collagen-based protective coverage membrane that can offer a moist, oxygen-rich environment for corneal epithelium, produce an appropriate intraocular pressure onto the cornea by gravity, and facilitate the maintenance of the organ culture medium level for nutrient supply during corneal preservation. Compared with conventional submerged and air-lifted corneal preservation methods, the air-lifted OC-P system remarkably improved the overall quality of the preserved corneas. These preserved corneas not only exhibited superior controllability of corneal swelling and extraordinary maintenance of the morphology and viability of all three types of corneal cells (i.e., corneal epithelium, keratocytes, and endothelium) but also demonstrated optimal optical, thermal, and mechanical properties. This air-lifted OC-P system presents a biomimetic strategy that provides a static and efficient method to replicate the corneal natural conditions for corneal preservation effectively.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture