Computational Modeling of Electrocatalysts for CO2 Reduction: Probing the Role of Primary, Secondary, and Outer Coordination Spheres.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2025-02-04 Epub Date: 2025-01-27 DOI:10.1021/acs.accounts.4c00631
Christina M Zeng, Julien A Panetier
{"title":"Computational Modeling of Electrocatalysts for CO<sub>2</sub> Reduction: Probing the Role of Primary, Secondary, and Outer Coordination Spheres.","authors":"Christina M Zeng, Julien A Panetier","doi":"10.1021/acs.accounts.4c00631","DOIUrl":null,"url":null,"abstract":"<p><p>ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO<sub>2</sub> binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function. We also discuss how computational techniques provide crucial insight into implementing these findings in homogeneous CO<sub>2</sub> reduction electrocatalysis design principles. The CO<sub>2</sub> binding sites (e.g., Ni and \"unique\" Fe ion) along with the ligands that support it (e.g., iron-sulfur cluster) form the primary coordination sphere. This is replicated in molecular electrocatalysts via the metal center and ligand framework where the substrate binds. This coordination sphere has a direct impact on the electronic configuration of the catalyst. By computationally modeling a series of Ni and Co complexes with bipyridyl-<i>N</i>-heterocyclic carbene ligand frameworks of varying degrees of planarity, we were able to closely examine how the primary coordination sphere controls the product distribution between CO and H<sub>2</sub> for these catalysts. The secondary coordination sphere (SCS) of Ni,Fe-CODH contains residues proximal to the active site pocket that provide hydrogen-bonding stabilizations necessary for the reaction to proceed. Enhancing the SCS when synthesizing new catalysts involves substituting functional groups onto the ligand for direct interaction with the substrate. To analyze the endless possible substitutions, computational techniques are ideal for deciphering the intricacies of substituent effects, as we demonstrated with an array of imidazolium-functionalized Mn and Re bipyridyl tricarbonyl complexes. By examining how the electrostatic interactions between the ligand, substrate, and proton source lowered activation energy barriers, we determined how best to pinpoint the SCS additions. The outer coordination sphere comprises the remaining parts of Ni,Fe-CODH, such as the elaborate protein matrix, solvent interactions, and remote metalloclusters. The challenge in elucidating and replicating the role of the vast protein matrix has understandably led to a localized focus on the primary and secondary coordination spheres. However, certain portions of Ni,Fe-CODH's expansive protein scaffold are suggested to be catalytically relevant despite considerable distance from the active site. Closer studies of these relatively overlooked areas of nature's exceptionally proficient catalysts may be crucial to continually improve upon electrocatalysis protocols. Mechanistic analysis of cobalt phthalocyanines (CoPc) immobilized onto carbon nanotubes (CoPc/CNT) reveals how the active site microenvironment and outer coordination sphere effects unlock the CoPc molecule's previously inaccessible intrinsic catalytic ability to convert CO<sub>2</sub> to MeOH. Our research suggests that incorporating the three coordination spheres in a holistic approach may be vital for advancing electrocatalysis toward viability in mitigating climate disruption. Computational methods allow us to closely examine transition states and determine how to minimize key activation energy barriers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"342-353"},"PeriodicalIF":16.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.accounts.4c00631","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO2 binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function. We also discuss how computational techniques provide crucial insight into implementing these findings in homogeneous CO2 reduction electrocatalysis design principles. The CO2 binding sites (e.g., Ni and "unique" Fe ion) along with the ligands that support it (e.g., iron-sulfur cluster) form the primary coordination sphere. This is replicated in molecular electrocatalysts via the metal center and ligand framework where the substrate binds. This coordination sphere has a direct impact on the electronic configuration of the catalyst. By computationally modeling a series of Ni and Co complexes with bipyridyl-N-heterocyclic carbene ligand frameworks of varying degrees of planarity, we were able to closely examine how the primary coordination sphere controls the product distribution between CO and H2 for these catalysts. The secondary coordination sphere (SCS) of Ni,Fe-CODH contains residues proximal to the active site pocket that provide hydrogen-bonding stabilizations necessary for the reaction to proceed. Enhancing the SCS when synthesizing new catalysts involves substituting functional groups onto the ligand for direct interaction with the substrate. To analyze the endless possible substitutions, computational techniques are ideal for deciphering the intricacies of substituent effects, as we demonstrated with an array of imidazolium-functionalized Mn and Re bipyridyl tricarbonyl complexes. By examining how the electrostatic interactions between the ligand, substrate, and proton source lowered activation energy barriers, we determined how best to pinpoint the SCS additions. The outer coordination sphere comprises the remaining parts of Ni,Fe-CODH, such as the elaborate protein matrix, solvent interactions, and remote metalloclusters. The challenge in elucidating and replicating the role of the vast protein matrix has understandably led to a localized focus on the primary and secondary coordination spheres. However, certain portions of Ni,Fe-CODH's expansive protein scaffold are suggested to be catalytically relevant despite considerable distance from the active site. Closer studies of these relatively overlooked areas of nature's exceptionally proficient catalysts may be crucial to continually improve upon electrocatalysis protocols. Mechanistic analysis of cobalt phthalocyanines (CoPc) immobilized onto carbon nanotubes (CoPc/CNT) reveals how the active site microenvironment and outer coordination sphere effects unlock the CoPc molecule's previously inaccessible intrinsic catalytic ability to convert CO2 to MeOH. Our research suggests that incorporating the three coordination spheres in a holistic approach may be vital for advancing electrocatalysis toward viability in mitigating climate disruption. Computational methods allow us to closely examine transition states and determine how to minimize key activation energy barriers.

二氧化碳还原电催化剂的计算建模:探究主配位层、次配位层和外配位层的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信