Top-down curing to construct self-retaining and moisture-pumping double-layered dressing with enhanced antibacterial, hemostatic, and wound healing performances

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-01-27 DOI:10.1039/d4nr04613g
Hao Yang, Yi Zhuang, Yulin Jiang, Huilun Xu, Zheng Liu, Yubao Li, Shuyu Zhang, Tao Guo, Lin Qi, Li Zhang
{"title":"Top-down curing to construct self-retaining and moisture-pumping double-layered dressing with enhanced antibacterial, hemostatic, and wound healing performances","authors":"Hao Yang, Yi Zhuang, Yulin Jiang, Huilun Xu, Zheng Liu, Yubao Li, Shuyu Zhang, Tao Guo, Lin Qi, Li Zhang","doi":"10.1039/d4nr04613g","DOIUrl":null,"url":null,"abstract":"Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an <em>in situ</em> construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca<small><sup>2+</sup></small>-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca<small><sup>2+</sup></small> in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound. Meanwhile, with the rapid evaporation of low-boiling solvents, the top layer changed into a PVB/HPMC (PH) membrane covering the AA hydrogel and adhering to the surrounding healthy skin to fix the dressing. Practically, HPMC particles in the top layer acting as “micropumps” could drain the wound exudate out, while Ag-MBG in the bottom layer endowed the dressing with anti-bacterial, hemostatic, and pro-healing functions. The integrally constructed PH-AA dressing achieved over 99% bacterial elimination against both <em>E. coli</em> and <em>S. aureus</em>. Biological assessments indicated that the double-layered dressing possessed excellent biocompatibility and enhanced wound healing, demonstrating a wound closure rate of &gt;97% at day 15. This study provides a facile method to directly construct multi-layer dressings on wounds to meet various wound care requirements.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"22 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04613g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an in situ construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca2+-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca2+ in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound. Meanwhile, with the rapid evaporation of low-boiling solvents, the top layer changed into a PVB/HPMC (PH) membrane covering the AA hydrogel and adhering to the surrounding healthy skin to fix the dressing. Practically, HPMC particles in the top layer acting as “micropumps” could drain the wound exudate out, while Ag-MBG in the bottom layer endowed the dressing with anti-bacterial, hemostatic, and pro-healing functions. The integrally constructed PH-AA dressing achieved over 99% bacterial elimination against both E. coli and S. aureus. Biological assessments indicated that the double-layered dressing possessed excellent biocompatibility and enhanced wound healing, demonstrating a wound closure rate of >97% at day 15. This study provides a facile method to directly construct multi-layer dressings on wounds to meet various wound care requirements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信