Water Quality and Land Use Shape Bacterial Communities Across 621 Canadian Lakes

IF 4.3 2区 生物学 Q2 MICROBIOLOGY
Vera E. Onana, Beatrix E. Beisner, David A. Walsh
{"title":"Water Quality and Land Use Shape Bacterial Communities Across 621 Canadian Lakes","authors":"Vera E. Onana,&nbsp;Beatrix E. Beisner,&nbsp;David A. Walsh","doi":"10.1111/1462-2920.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones. At the pan-Canadian scale, total phosphorus (TP) was the most significant water quality variable influencing community structure, and the most pronounced shift was observed at 110 μg/L of TP, corresponding to the transition from eutrophic to hypereutrophic conditions. At the regional scale, water quality significantly explained bacterial community structure in all ecozones. In terms of land use effect, at the pan-Canadian scale, agriculture and, to a lesser extent, urbanisation were significant land use variables influencing community structure. Regionally, in ecozones characterised by extensive agriculture, this land cover variable was consistently significant in explaining community structure. Likewise, in extensively urbanised ecozones, urbanisation was consistently significant in explaining community structure. Overall, these results demonstrate that bacterial richness and community structure are influenced by water quality and shaped by agriculture and urban development in different ways.</p>\n </div>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70037","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones. At the pan-Canadian scale, total phosphorus (TP) was the most significant water quality variable influencing community structure, and the most pronounced shift was observed at 110 μg/L of TP, corresponding to the transition from eutrophic to hypereutrophic conditions. At the regional scale, water quality significantly explained bacterial community structure in all ecozones. In terms of land use effect, at the pan-Canadian scale, agriculture and, to a lesser extent, urbanisation were significant land use variables influencing community structure. Regionally, in ecozones characterised by extensive agriculture, this land cover variable was consistently significant in explaining community structure. Likewise, in extensively urbanised ecozones, urbanisation was consistently significant in explaining community structure. Overall, these results demonstrate that bacterial richness and community structure are influenced by water quality and shaped by agriculture and urban development in different ways.

Abstract Image

Abstract Image

农业和城市发展等人类活动与水质退化息息相关。加拿大淡水湖泊众多,地貌各异,气候、地理和地质的变化与土地覆盖的改变相互作用,对不同地区的水质产生了不同的影响。在这项研究中,我们调查了水质和土地利用对 12 个生态区细菌群落的影响。在泛加拿大尺度上,总磷(TP)是影响群落结构最显著的水质变量,在 TP 值为 110 μg/L 时观察到最明显的变化,这与富营养化向高富营养化的过渡条件相对应。在区域范围内,水质在很大程度上解释了所有生态区的细菌群落结构。就土地利用效应而言,在泛加拿大尺度上,农业和城市化对群落结构有重要影响。就地区而言,在以大面积农业为特征的生态区,这一土地覆被变量在解释群落结构方面一直具有重要意义。同样,在广泛城市化的生态区,城市化在解释群落结构方面也一直很重要。总之,这些结果表明,细菌丰富度和群落结构受到水质的影响,并以不同的方式受到农业和城市发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental microbiology
Environmental microbiology 环境科学-微生物学
CiteScore
9.90
自引率
3.90%
发文量
427
审稿时长
2.3 months
期刊介绍: Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信