A One-Step Plasma Assisted Synthesis of Gold Nanoparticles and Simultaneous Linker-Free Conjugation with Nestin: An In Vitro Study of Cellular Toxicity
{"title":"A One-Step Plasma Assisted Synthesis of Gold Nanoparticles and Simultaneous Linker-Free Conjugation with Nestin: An In Vitro Study of Cellular Toxicity","authors":"Melika Sanavandi, Kimia Aalikhani, Mojtaba Shafiee, Hodjatallah Rabbani, Ghazaleh Fazli, Niloufar Sadeghi, Babak Shokri","doi":"10.1021/acs.nanolett.4c05641","DOIUrl":null,"url":null,"abstract":"We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches. The first method involves synthesizing GNPs with citrate, followed by NES conjugation via plasma. The second method synthesizes and conjugates GNPs to NES simultaneously using plasma treatment. Conjugation was confirmed by <i>Enzyme-Linked Immunosorbent Assay</i>, <i>Zeta-sizer</i>, <i>UV–vis spectroscopy</i>, and <i>Transmission Electron Microscopy</i>. In addition, the toxicity of the prepared samples was investigated in vitro using peripheral blood mononuclear cells (PBMCs) and <i>flow cytometry</i>, which proved the nontoxicity of the samples.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"34 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05641","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches. The first method involves synthesizing GNPs with citrate, followed by NES conjugation via plasma. The second method synthesizes and conjugates GNPs to NES simultaneously using plasma treatment. Conjugation was confirmed by Enzyme-Linked Immunosorbent Assay, Zeta-sizer, UV–vis spectroscopy, and Transmission Electron Microscopy. In addition, the toxicity of the prepared samples was investigated in vitro using peripheral blood mononuclear cells (PBMCs) and flow cytometry, which proved the nontoxicity of the samples.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.