Design of Litchi-Like Al/PTFE with Superior Reactivity and Application in Solid Propellants

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-26 DOI:10.1002/smll.202410377
Ting Liu, Cui Nie, Yao-feng Mao, Yu Zhang, Gang Li, Fu-de Nie, Jun Wang, Jie Chen
{"title":"Design of Litchi-Like Al/PTFE with Superior Reactivity and Application in Solid Propellants","authors":"Ting Liu, Cui Nie, Yao-feng Mao, Yu Zhang, Gang Li, Fu-de Nie, Jun Wang, Jie Chen","doi":"10.1002/smll.202410377","DOIUrl":null,"url":null,"abstract":"The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (Al<sub>2</sub>O<sub>3</sub>). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the Al<sub>2</sub>O<sub>3</sub> layer and carbon deposition. This unique PTFE-coated structure can achieve localized activation of Al by surface etching, creating reaction channels, and exposing the active Al. Such a channel network promotes the circulation of fluorine and oxygen, stimulating the synergistic reactions of Al-F and Al-O and energy output. Regulating the PTFE content can maximize the elimination of carbon deposition and achieve the full combustion reaction of Al/PTFE. The maximum flame area and pressure output of the litchi-like Al/PTFE fuel increased by 241.9%, 734.7%, 118.4%, and 265.2%, respectively, compared with traditional physical mixture and core-shell structure Al/PTFE fuels. The localized activation and synergistic effects of litchi-like structure effectively transform carbon waste into a valuable resource, introducing a novel approach for the propellants.","PeriodicalId":228,"journal":{"name":"Small","volume":"48 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410377","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The combustion efficiency and reactivity of aluminum (Al) particles, as a crucial component in solid propellants, are constrained by the inert oxide layer aluminum oxide (Al2O3). Polytetrafluoroethylene (PTFE) can remove the oxide layer, however, carbon deposition generated during the reaction process still limits the reaction efficiency of Al/PTFE fuel. Here, a litchi-like Al/PTFE fuel with the nano-PTFE islands distributed on the Al particles surface is successfully designed, based on localized activation and synergistic reaction strategies, to solve the Al2O3 layer and carbon deposition. This unique PTFE-coated structure can achieve localized activation of Al by surface etching, creating reaction channels, and exposing the active Al. Such a channel network promotes the circulation of fluorine and oxygen, stimulating the synergistic reactions of Al-F and Al-O and energy output. Regulating the PTFE content can maximize the elimination of carbon deposition and achieve the full combustion reaction of Al/PTFE. The maximum flame area and pressure output of the litchi-like Al/PTFE fuel increased by 241.9%, 734.7%, 118.4%, and 265.2%, respectively, compared with traditional physical mixture and core-shell structure Al/PTFE fuels. The localized activation and synergistic effects of litchi-like structure effectively transform carbon waste into a valuable resource, introducing a novel approach for the propellants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信