Xue Yang, Tao Huang, Chang Gao, Peiru Wu, Zhiqi Hu, Lingling Wu, Haonan Jia, Qingsong Li, Qian Li, Chengyu Wang, Robert Chunhua Zhao, Rong Cao
{"title":"Hydrogen-Bonded Organic Framework Films Integrated with Wavy Structured Design for Wearable Bioelectronics","authors":"Xue Yang, Tao Huang, Chang Gao, Peiru Wu, Zhiqi Hu, Lingling Wu, Haonan Jia, Qingsong Li, Qian Li, Chengyu Wang, Robert Chunhua Zhao, Rong Cao","doi":"10.1002/smll.202409587","DOIUrl":null,"url":null,"abstract":"The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes. This wearable biosensor demonstrates ultrasensitive detection capabilities, with a limit of detection of 49.64 nM, and accurately measures nutritional content in sweat while conforming to curved skin surfaces. The sensor's performance is comparable to those obtained using high-performance liquid chromatography (HPLC). More strikingly, scratched HOFs films can be regenerated through a simple solvent rinsing process, enabling their reuse in the fabrication of new biosensors and offering a significant advantage over conventional sensing materials. This work has the potential to inspire the development of more flexible electronic devices, leveraging the structural adaptability and diversity of HOFs for personalized healthcare applications and real-time health monitoring.","PeriodicalId":228,"journal":{"name":"Small","volume":"4 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409587","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of hydrogen-bonded organic frameworks (HOFs) with flexible electronic technologies offers a promising strategy for monitoring detailed health information, owing to their inherent porosity, excellent biocompatibility, and tunable catalytic capabilities. However, their application in wearable and real-time health monitoring remains largely unexplored, primarily due to the mechanical mismatch between the traditionally fragile HOFs particles and the softness of human skin. Herein, this study demonstrates an epidermal biosensor that maintains reliable sensing capability even under extreme deformation and complex environmental conditions by integrating HOFs films with wavy bioelectrodes. This wearable biosensor demonstrates ultrasensitive detection capabilities, with a limit of detection of 49.64 nM, and accurately measures nutritional content in sweat while conforming to curved skin surfaces. The sensor's performance is comparable to those obtained using high-performance liquid chromatography (HPLC). More strikingly, scratched HOFs films can be regenerated through a simple solvent rinsing process, enabling their reuse in the fabrication of new biosensors and offering a significant advantage over conventional sensing materials. This work has the potential to inspire the development of more flexible electronic devices, leveraging the structural adaptability and diversity of HOFs for personalized healthcare applications and real-time health monitoring.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.