A Coordination Nanosystem Enables Endogenous Ferric Ion-Initiated Multi-Catalysis for Synergistic Tumor-Specific Ferroptosis and Gene Therapy

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-27 DOI:10.1002/smll.202411440
Jiajie Chen, Yitong Wang, Zhibo Yang, Kai Tang, Xinchun Liu, Hongshi Ma, Huamao Ye, Chengtie Wu, Yufang Zhu
{"title":"A Coordination Nanosystem Enables Endogenous Ferric Ion-Initiated Multi-Catalysis for Synergistic Tumor-Specific Ferroptosis and Gene Therapy","authors":"Jiajie Chen, Yitong Wang, Zhibo Yang, Kai Tang, Xinchun Liu, Hongshi Ma, Huamao Ye, Chengtie Wu, Yufang Zhu","doi":"10.1002/smll.202411440","DOIUrl":null,"url":null,"abstract":"Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe<sup>3+</sup>)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy. Profiting from the characteristic coordination structure and components, ZDD can not only specifically capture tumor endogenous Fe<sup>3+</sup> into the tumor cells to promote the catalytic generation of hydroxyl radicals (·OH) and superoxide anions (O<sub>2</sub>·<sup>−</sup>) under acidic environment and the catalytic GSH oxidation, arousing potent ferroptotic cell death, but also effectively deliver specific DNAzyme and release abundant zinc ion (Zn<sup>2+</sup>) as a powerful cofactor to activate the biocatalytic cleavage of vascular endothelial growth factor receptor 2 (VEGFR2) gene for angiogenesis suppression. Ultimately, the ZDD-enabled synergistic therapy prominently inhibited tumor growth and prevented metastasis, representing a promising nanotherapeutic formula for safe and efficient tumor therapy.","PeriodicalId":228,"journal":{"name":"Small","volume":"28 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe3+)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy. Profiting from the characteristic coordination structure and components, ZDD can not only specifically capture tumor endogenous Fe3+ into the tumor cells to promote the catalytic generation of hydroxyl radicals (·OH) and superoxide anions (O2·) under acidic environment and the catalytic GSH oxidation, arousing potent ferroptotic cell death, but also effectively deliver specific DNAzyme and release abundant zinc ion (Zn2+) as a powerful cofactor to activate the biocatalytic cleavage of vascular endothelial growth factor receptor 2 (VEGFR2) gene for angiogenesis suppression. Ultimately, the ZDD-enabled synergistic therapy prominently inhibited tumor growth and prevented metastasis, representing a promising nanotherapeutic formula for safe and efficient tumor therapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信