LiF Artifacts in XPS Analysis of the SEI for Lithium Metal Batteries

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aosong Gao, Hao Lai, Mingqiu Duan, Si Chen, Wenyu Huang, Muzi Yang, Li Gong, Jian Chen, Fangyan Xie, Hui Meng
{"title":"LiF Artifacts in XPS Analysis of the SEI for Lithium Metal Batteries","authors":"Aosong Gao, Hao Lai, Mingqiu Duan, Si Chen, Wenyu Huang, Muzi Yang, Li Gong, Jian Chen, Fangyan Xie, Hui Meng","doi":"10.1021/acsami.4c17553","DOIUrl":null,"url":null,"abstract":"The solid electrolyte interphase (SEI) is considered to be the key to the performance of lithium metal batteries (LMBs). The analysis of the SEI and cathode electrolyte interphase (CEI) composition (especially F 1s spectra) by X-ray photoelectron spectroscopy (XPS) has become a consensus among researchers. However, the surface-sensitive XPS characterization is susceptible to LiF artifacts due to several factors, leading to the overexaggerated role of LiF in the analysis of the SEI and CEI. In this paper, we conduct a systematic study on the reasons for the LiF artifacts in the XPS characterization of LMBs. The decomposition of the SEI and CEI components under argon ion sputtering, the reaction between Li<sub>2</sub>CO<sub>3</sub> and LiPF<sub>6</sub> in the electrolyte, influence of different sample pretreatments, the selection of the XPS measurement region, and the measurement time on the resulting spectra are investigated. The results indicate that the high content of LiF in the SEI and CEI may be attributed to the LiF artifacts, and the role of LiF in the SEI may be overexaggerated as a consequence. This work sounds an alarm about the potential misuse of argon ion sputtering and the lack of rigorous XPS characterization in SEI studies. This work also helps to set up standardized XPS characterization to provide a more accurate understanding of the role of SEI components.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"21 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17553","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The solid electrolyte interphase (SEI) is considered to be the key to the performance of lithium metal batteries (LMBs). The analysis of the SEI and cathode electrolyte interphase (CEI) composition (especially F 1s spectra) by X-ray photoelectron spectroscopy (XPS) has become a consensus among researchers. However, the surface-sensitive XPS characterization is susceptible to LiF artifacts due to several factors, leading to the overexaggerated role of LiF in the analysis of the SEI and CEI. In this paper, we conduct a systematic study on the reasons for the LiF artifacts in the XPS characterization of LMBs. The decomposition of the SEI and CEI components under argon ion sputtering, the reaction between Li2CO3 and LiPF6 in the electrolyte, influence of different sample pretreatments, the selection of the XPS measurement region, and the measurement time on the resulting spectra are investigated. The results indicate that the high content of LiF in the SEI and CEI may be attributed to the LiF artifacts, and the role of LiF in the SEI may be overexaggerated as a consequence. This work sounds an alarm about the potential misuse of argon ion sputtering and the lack of rigorous XPS characterization in SEI studies. This work also helps to set up standardized XPS characterization to provide a more accurate understanding of the role of SEI components.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信