Stretchable Blue Phase Liquid Crystal Lasers with Optical Stability Based on Small-Strain Nonlinear 3D Asymmetric Deformation

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanqing Chen, Chenglin Zheng, Wenjie Yang, Jing Li, Feng Jin, Wei Zhang, Wentao Sun, Pingli Wang, Laifeng Li, Jingxia Wang, Lei Jiang
{"title":"Stretchable Blue Phase Liquid Crystal Lasers with Optical Stability Based on Small-Strain Nonlinear 3D Asymmetric Deformation","authors":"Yanqing Chen, Chenglin Zheng, Wenjie Yang, Jing Li, Feng Jin, Wei Zhang, Wentao Sun, Pingli Wang, Laifeng Li, Jingxia Wang, Lei Jiang","doi":"10.1002/adma.202416448","DOIUrl":null,"url":null,"abstract":"Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.429 nm lasing shift at 32% strain) and a broad-temperature range (from −20 to 100 °C). The superior performance can be attributed to the nonlinear 3D asymmetric deformation exhibited by the BPI lattice during stretching, particularly at low deformation rates below 40% strain, which effectively maintains the stability of the body-centered cubic structure (with the maximum strain of this BPLCE up to 220%). Moreover, the BPLCE exhibits excellent thermal stability over a temperature range from −180 to 70 °C with a stopband shift of less than ±10 nm. As a proof-of-concept, the application of BPLCE laser for morphology sensing and 3D mechanical perception is demonstrated, which paves the way for potential applications of flexible optoelectronics.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"120 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416448","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.429 nm lasing shift at 32% strain) and a broad-temperature range (from −20 to 100 °C). The superior performance can be attributed to the nonlinear 3D asymmetric deformation exhibited by the BPI lattice during stretching, particularly at low deformation rates below 40% strain, which effectively maintains the stability of the body-centered cubic structure (with the maximum strain of this BPLCE up to 220%). Moreover, the BPLCE exhibits excellent thermal stability over a temperature range from −180 to 70 °C with a stopband shift of less than ±10 nm. As a proof-of-concept, the application of BPLCE laser for morphology sensing and 3D mechanical perception is demonstrated, which paves the way for potential applications of flexible optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信