{"title":"Light-Induced Transformation from Covalent to Supramolecular Polymer Networks","authors":"Chuan Yue, Jingxi Deng, Bo Pang, Guoquan Liu, Yuanhao Wang, Haonan Xu, Shaolei Qu, Yuhang Liu, Yanxi Liu, Zhaoming Zhang, Hui Zhou, Xuzhou Yan","doi":"10.1021/acsmacrolett.4c00744","DOIUrl":null,"url":null,"abstract":"Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types. This transformation is enabled by specifically designed covalent moieties that upon UV exposure reveal quadruple hydrogen bonding sites, allowing the formation of a supramolecular network. This network-type transition from CPN to SPN induces pronounced intrinsic changes in material properties, including a substantially increased breaking elongation, lower Young’s modulus, reduced fracture strength, and decreased creep resistance, marking a shift from a stable, rigid structure to a dynamic, adaptable one. These findings provide new insights into the design of advanced stimuli-responsive polymer materials through network-type transformations, opening new avenues for applications in smart and multifunctional materials.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"4 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types. This transformation is enabled by specifically designed covalent moieties that upon UV exposure reveal quadruple hydrogen bonding sites, allowing the formation of a supramolecular network. This network-type transition from CPN to SPN induces pronounced intrinsic changes in material properties, including a substantially increased breaking elongation, lower Young’s modulus, reduced fracture strength, and decreased creep resistance, marking a shift from a stable, rigid structure to a dynamic, adaptable one. These findings provide new insights into the design of advanced stimuli-responsive polymer materials through network-type transformations, opening new avenues for applications in smart and multifunctional materials.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.