Computer-aided discovery of novel AMPK activators through virtual screening and SAR-driven synthesis

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Kyung-Hwa Jeon , Jae-Ho Shin , Hyun-Ji Jo , Hyunjeong Kim , Seojeong Park , Seojeong Kim , Juhong Lee , Eosu Kim , Younghwa Na , Youngjoo Kwon
{"title":"Computer-aided discovery of novel AMPK activators through virtual screening and SAR-driven synthesis","authors":"Kyung-Hwa Jeon ,&nbsp;Jae-Ho Shin ,&nbsp;Hyun-Ji Jo ,&nbsp;Hyunjeong Kim ,&nbsp;Seojeong Park ,&nbsp;Seojeong Kim ,&nbsp;Juhong Lee ,&nbsp;Eosu Kim ,&nbsp;Younghwa Na ,&nbsp;Youngjoo Kwon","doi":"10.1016/j.ejmech.2025.117318","DOIUrl":null,"url":null,"abstract":"<div><div>AMPK is a promising target for various chronic illnesses such as diabetes and Alzheimer's disease (AD). We sought to develop a novel small molecule that directly activates AMPK, with the potential to fundamentally modulate the pathogenic mechanisms of the metabolic disorders. To identify a potent novel pharmacophore in an unbiased way, we performed structure-based virtual screening on a commercially available chemical library, and evaluated the actual AMPK activity of 118 compounds selected from 100,000 compounds based on docking scores. Additional iterative molecular docking studies and experimental evaluation of AMPK activity led us to select a hit compound, B1, with a chromone backbone. Using the hit compound and other compounds structurally similar to the hit compound, we identified the chalcone structure as a new scaffold with more efficient interactions with key residues required for AMPK activation. From the newly designed and synthesized chalcone derivatives, we discovered compound <strong>6</strong> as a candidate compound. Compound <strong>6</strong> showed the most efficient interactions with the key residues of AMPK at <em>in silico</em> study and demonstrated significant activation of AMPK in both <em>in vitro</em> and in cellular assays.</div></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"287 ","pages":"Article 117318"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523425000832","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

AMPK is a promising target for various chronic illnesses such as diabetes and Alzheimer's disease (AD). We sought to develop a novel small molecule that directly activates AMPK, with the potential to fundamentally modulate the pathogenic mechanisms of the metabolic disorders. To identify a potent novel pharmacophore in an unbiased way, we performed structure-based virtual screening on a commercially available chemical library, and evaluated the actual AMPK activity of 118 compounds selected from 100,000 compounds based on docking scores. Additional iterative molecular docking studies and experimental evaluation of AMPK activity led us to select a hit compound, B1, with a chromone backbone. Using the hit compound and other compounds structurally similar to the hit compound, we identified the chalcone structure as a new scaffold with more efficient interactions with key residues required for AMPK activation. From the newly designed and synthesized chalcone derivatives, we discovered compound 6 as a candidate compound. Compound 6 showed the most efficient interactions with the key residues of AMPK at in silico study and demonstrated significant activation of AMPK in both in vitro and in cellular assays.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信