Free-Standing Ni nanoparticles wrapped in electrochemically reduced graphene Oxide: A highly efficient electrocatalyst for hydrogen evolution in acidic conditions

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Bingül Kurt Urhan, Saadet Dinç, Ümit Demir
{"title":"Free-Standing Ni nanoparticles wrapped in electrochemically reduced graphene Oxide: A highly efficient electrocatalyst for hydrogen evolution in acidic conditions","authors":"Bingül Kurt Urhan, Saadet Dinç, Ümit Demir","doi":"10.1016/j.seppur.2025.131834","DOIUrl":null,"url":null,"abstract":"This study presents an eco-friendly, one-pot electrochemical method for fabricating flexible, free-standing electrodes composed of nickel nanoparticles (NiNPs) wrapped in electrochemically reduced graphene oxide (ERGO). The process involves simultaneous reduction of GO and Ni<sup>2+</sup> ions on indium-doped tin oxide (ITO) substrates, followed by detachment using H<sub>2</sub> bubbling delamination. Characterization revealed uniform distribution of NiNPs within ERGO layers, providing abundant active sites. After electrochemical activation, the NiNPs/ERGO electrodes demonstrated exceptional hydrogen evolution reaction (HER) performance in 0.5 M H<sub>2</sub>SO<sub>4</sub>, with a low overpotential of 73 mV at 10 mA cm<sup>−2</sup>, a Tafel slope of 31 mV dec<sup>−1</sup>, and outstanding durability. This innovative approach offers potential for developing high-performance electrocatalysts for water splitting and other applications.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"22 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131834","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an eco-friendly, one-pot electrochemical method for fabricating flexible, free-standing electrodes composed of nickel nanoparticles (NiNPs) wrapped in electrochemically reduced graphene oxide (ERGO). The process involves simultaneous reduction of GO and Ni2+ ions on indium-doped tin oxide (ITO) substrates, followed by detachment using H2 bubbling delamination. Characterization revealed uniform distribution of NiNPs within ERGO layers, providing abundant active sites. After electrochemical activation, the NiNPs/ERGO electrodes demonstrated exceptional hydrogen evolution reaction (HER) performance in 0.5 M H2SO4, with a low overpotential of 73 mV at 10 mA cm−2, a Tafel slope of 31 mV dec−1, and outstanding durability. This innovative approach offers potential for developing high-performance electrocatalysts for water splitting and other applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信