Free-Standing Ni nanoparticles wrapped in electrochemically reduced graphene Oxide: A highly efficient electrocatalyst for hydrogen evolution in acidic conditions
{"title":"Free-Standing Ni nanoparticles wrapped in electrochemically reduced graphene Oxide: A highly efficient electrocatalyst for hydrogen evolution in acidic conditions","authors":"Bingül Kurt Urhan, Saadet Dinç, Ümit Demir","doi":"10.1016/j.seppur.2025.131834","DOIUrl":null,"url":null,"abstract":"This study presents an eco-friendly, one-pot electrochemical method for fabricating flexible, free-standing electrodes composed of nickel nanoparticles (NiNPs) wrapped in electrochemically reduced graphene oxide (ERGO). The process involves simultaneous reduction of GO and Ni<sup>2+</sup> ions on indium-doped tin oxide (ITO) substrates, followed by detachment using H<sub>2</sub> bubbling delamination. Characterization revealed uniform distribution of NiNPs within ERGO layers, providing abundant active sites. After electrochemical activation, the NiNPs/ERGO electrodes demonstrated exceptional hydrogen evolution reaction (HER) performance in 0.5 M H<sub>2</sub>SO<sub>4</sub>, with a low overpotential of 73 mV at 10 mA cm<sup>−2</sup>, a Tafel slope of 31 mV dec<sup>−1</sup>, and outstanding durability. This innovative approach offers potential for developing high-performance electrocatalysts for water splitting and other applications.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"22 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131834","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an eco-friendly, one-pot electrochemical method for fabricating flexible, free-standing electrodes composed of nickel nanoparticles (NiNPs) wrapped in electrochemically reduced graphene oxide (ERGO). The process involves simultaneous reduction of GO and Ni2+ ions on indium-doped tin oxide (ITO) substrates, followed by detachment using H2 bubbling delamination. Characterization revealed uniform distribution of NiNPs within ERGO layers, providing abundant active sites. After electrochemical activation, the NiNPs/ERGO electrodes demonstrated exceptional hydrogen evolution reaction (HER) performance in 0.5 M H2SO4, with a low overpotential of 73 mV at 10 mA cm−2, a Tafel slope of 31 mV dec−1, and outstanding durability. This innovative approach offers potential for developing high-performance electrocatalysts for water splitting and other applications.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.