{"title":"Province of Origin, Decision-Making Bias, and Responses to Bureaucratic Versus Algorithmic Decision-Making","authors":"Ge Wang, Zhejun Zhang, Shenghua Xie, Yue Guo","doi":"10.1111/puar.13928","DOIUrl":null,"url":null,"abstract":"As algorithmic decision-making (ADM) becomes prevalent in certain public sectors, its interaction with traditional bureaucratic decision-making (BDM) evolves, especially in contexts shaped by regional identities and decision-making biases. To explore these dynamics, we conducted two survey experiments within traffic enforcement scenarios, involving 4816 participants across multiple provinces. Results indicate that non-native residents perceived ADM as fairer and more acceptable than BDM when they did not share a province of origin with local bureaucrats. Both native and non-native residents showed a preference for ADM in the presence of bureaucratic and algorithmic biases but preferred BDM when such biases were absent. When bureaucratic and algorithmic biases coexisted, the lack of a shared province of origin further reinforced non-native residents' perception of ADM as fairer and more acceptable than BDM. Our findings reveal the complex interplay among province of origin, decision-making biases, and responses to different decision-making approaches.","PeriodicalId":48431,"journal":{"name":"Public Administration Review","volume":"38 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Administration Review","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1111/puar.13928","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0
Abstract
As algorithmic decision-making (ADM) becomes prevalent in certain public sectors, its interaction with traditional bureaucratic decision-making (BDM) evolves, especially in contexts shaped by regional identities and decision-making biases. To explore these dynamics, we conducted two survey experiments within traffic enforcement scenarios, involving 4816 participants across multiple provinces. Results indicate that non-native residents perceived ADM as fairer and more acceptable than BDM when they did not share a province of origin with local bureaucrats. Both native and non-native residents showed a preference for ADM in the presence of bureaucratic and algorithmic biases but preferred BDM when such biases were absent. When bureaucratic and algorithmic biases coexisted, the lack of a shared province of origin further reinforced non-native residents' perception of ADM as fairer and more acceptable than BDM. Our findings reveal the complex interplay among province of origin, decision-making biases, and responses to different decision-making approaches.
期刊介绍:
Public Administration Review (PAR), a bi-monthly professional journal, has held its position as the premier outlet for public administration research, theory, and practice for 75 years. Published for the American Society for Public Administration,TM/SM, it uniquely serves both academics and practitioners in the public sector. PAR features articles that identify and analyze current trends, offer a factual basis for decision-making, stimulate discussion, and present leading literature in an easily accessible format. Covering a diverse range of topics and featuring expert book reviews, PAR is both exciting to read and an indispensable resource in the field.