Insights into the role of dissolved organic matter derived from paddy soils with different parent materials in the environmental behavior of heavy metal adsorbed by ferrihydrite
Tianming Wang , Bo Li , Leiye Sun , Wei Li , Meiqing Chen , Zhongbo Shang , Jiayan Wu , Linqing Liu , Jieyu Liu , Sheng Liu , Xuan Liu , Kejing Zhang , Pingxiao Wu , Nengwu Zhu , Zhi Dang
{"title":"Insights into the role of dissolved organic matter derived from paddy soils with different parent materials in the environmental behavior of heavy metal adsorbed by ferrihydrite","authors":"Tianming Wang , Bo Li , Leiye Sun , Wei Li , Meiqing Chen , Zhongbo Shang , Jiayan Wu , Linqing Liu , Jieyu Liu , Sheng Liu , Xuan Liu , Kejing Zhang , Pingxiao Wu , Nengwu Zhu , Zhi Dang","doi":"10.1016/j.envpol.2025.125744","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions. An increased Cd and Pb binding during DOM-Fh interactions was observed and attributed to the introduction of additional binding sites by the organic functional groups with a variety of metal affinities. Specifically, more aromatic carboxyl groups in FDOM and more aliphatic groups in SDOM strongly promoted the adsorption of Pb and Cd, respectively. Meanwhile, Higher pH and increased C/Fe also promoted HMs adsorption, particularly in the presence of DOM. Further characterization indicated that electrostatic attraction, ion exchange and surface complexation were primary mechanisms of HMs adsorption. These finding highlight the significant impact of DOM-Fh interactions, dependent on different soil parent materials, on the mobility and fate of HMs in soils, providing valuable insights into the role of DOM composition in influencing HMs contamination, which offer theoretical guidance for environmental management, especially in agricultural and contaminated soils.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"368 ","pages":"Article 125744"},"PeriodicalIF":7.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125001174","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions. An increased Cd and Pb binding during DOM-Fh interactions was observed and attributed to the introduction of additional binding sites by the organic functional groups with a variety of metal affinities. Specifically, more aromatic carboxyl groups in FDOM and more aliphatic groups in SDOM strongly promoted the adsorption of Pb and Cd, respectively. Meanwhile, Higher pH and increased C/Fe also promoted HMs adsorption, particularly in the presence of DOM. Further characterization indicated that electrostatic attraction, ion exchange and surface complexation were primary mechanisms of HMs adsorption. These finding highlight the significant impact of DOM-Fh interactions, dependent on different soil parent materials, on the mobility and fate of HMs in soils, providing valuable insights into the role of DOM composition in influencing HMs contamination, which offer theoretical guidance for environmental management, especially in agricultural and contaminated soils.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.