{"title":"Tailoring molecular diffusion in core-shell zeolite imidazolate framework composites realizes efficient kinetic separation of xylene isomers","authors":"Linghe Yang, Guangtong Hai, Ying Liu, Fang Zheng, Fuxing Shen, Lihang Chen, Baojian Liu, Zhiguo Zhang, Qiwei Yang, Qilong Ren, Yong Luo, Zongbi Bao","doi":"10.1002/anie.202420953","DOIUrl":null,"url":null,"abstract":"The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic \"shell-gated diffusion and core-facilitated transport\" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers. This architecture yields remarkable improvements in both selectivity and diffusion rates, as demonstrated by vapor-phase adsorption studies and molecular dynamics simulations. The ZIF-65@ZIF-67 composite exhibits up to 12.5 times higher PX/OX selectivity in liquid-phase adsorption and 3.4 times higher dynamic selectivity in fixed-column breakthrough experiments compared to the individual ZIF components. Theoretical simulations further corroborate the heterogeneous diffusion control mechanism, revealing the time-dependent diffusion regulation within the core-shell architecture. This work underscores the great potential of core-shell MOF composites in optimizing molecular sieving processes for industrially significant separations and highlights a new route for enhancing kinetic separation efficiency in complex multicomponent systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"45 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers. This architecture yields remarkable improvements in both selectivity and diffusion rates, as demonstrated by vapor-phase adsorption studies and molecular dynamics simulations. The ZIF-65@ZIF-67 composite exhibits up to 12.5 times higher PX/OX selectivity in liquid-phase adsorption and 3.4 times higher dynamic selectivity in fixed-column breakthrough experiments compared to the individual ZIF components. Theoretical simulations further corroborate the heterogeneous diffusion control mechanism, revealing the time-dependent diffusion regulation within the core-shell architecture. This work underscores the great potential of core-shell MOF composites in optimizing molecular sieving processes for industrially significant separations and highlights a new route for enhancing kinetic separation efficiency in complex multicomponent systems.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.