Ivan V. Khariushin, Philipp Thielert, Elisa Zöllner, Maximilian Mayländer, Theresia Quintes, Sabine Richert, Andreas Vargas Jentzsch
{"title":"Supramolecular dyads as photogenerated qubit candidates","authors":"Ivan V. Khariushin, Philipp Thielert, Elisa Zöllner, Maximilian Mayländer, Theresia Quintes, Sabine Richert, Andreas Vargas Jentzsch","doi":"10.1038/s41557-024-01716-5","DOIUrl":null,"url":null,"abstract":"<p>Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore–radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet–radical pairs that can result in the formation of quartet states by spin mixing. For a triplet–radical pair to undergo spin mixing, the molecular bridge joining the spin centres must permit effective spin communication, which has previously been ensured using covalent, π-conjugated linkers. Here we used perylenediimides and nitroxide radicals designed to self-assemble in solution via hydrogen bonding and observed, using electron paramagnetic resonance spectroscopy, the formation of quartet states that can be manipulated coherently using microwaves. This unprecedented finding that non-covalent bonds can enable spin mixing advances supramolecular chemistry as a valuable tool for exploring, developing and scaling up materials for quantum information science.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"54 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01716-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore–radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet–radical pairs that can result in the formation of quartet states by spin mixing. For a triplet–radical pair to undergo spin mixing, the molecular bridge joining the spin centres must permit effective spin communication, which has previously been ensured using covalent, π-conjugated linkers. Here we used perylenediimides and nitroxide radicals designed to self-assemble in solution via hydrogen bonding and observed, using electron paramagnetic resonance spectroscopy, the formation of quartet states that can be manipulated coherently using microwaves. This unprecedented finding that non-covalent bonds can enable spin mixing advances supramolecular chemistry as a valuable tool for exploring, developing and scaling up materials for quantum information science.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.