An Hα–X-ray surface-brightness correlation for filaments in cooling-flow clusters

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Valeria Olivares, Adrien Picquenot, Yuanyuan Su, Massimo Gaspari, Marie-Lou Gendron-Marsolais, Fiorella L. Polles, Paul Nulsen
{"title":"An Hα–X-ray surface-brightness correlation for filaments in cooling-flow clusters","authors":"Valeria Olivares, Adrien Picquenot, Yuanyuan Su, Massimo Gaspari, Marie-Lou Gendron-Marsolais, Fiorella L. Polles, Paul Nulsen","doi":"10.1038/s41550-024-02473-8","DOIUrl":null,"url":null,"abstract":"<p>Massive galaxies in cooling-flow clusters display clear evidence of feedback from active galactic nuclei (AGNs). Joint X-ray and radio observations have shown that AGN radio jets push aside the surrounding hot gas and form cavities in the hot intracluster medium (ICM). These systems host complex, kiloparsec-scale, multiphase filamentary structures, from warm and ionized (10,000 K) to cold and molecular (&lt;100 K). These striking clumpy filaments are believed to be a natural outcome of thermally unstable cooling from the hot ICM, probably triggered by feedback processes while contributing to feeding the AGN via chaotic cold accretion (CCA). However, the detailed constraints on the formation mechanism of the filaments are still uncertain, and the connection between the different gas phases has to be fully unveiled. By leveraging a sample of seven X-ray-bright cooling-flow clusters, we have discovered a tight positive correlation between the X-ray surface brightness and the Hα surface brightness of the filaments over two orders of magnitude, as also found in stripped tails. We further show the quantitative consistency of such a relation with CCA predictions by leveraging hydrodynamical simulations. This discovery provides evidence for a shared excitation mechanism between hot and warm filaments, where multiphase condensation, triggered by AGN feedback, drives their tight co-evolution.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"35 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02473-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Massive galaxies in cooling-flow clusters display clear evidence of feedback from active galactic nuclei (AGNs). Joint X-ray and radio observations have shown that AGN radio jets push aside the surrounding hot gas and form cavities in the hot intracluster medium (ICM). These systems host complex, kiloparsec-scale, multiphase filamentary structures, from warm and ionized (10,000 K) to cold and molecular (<100 K). These striking clumpy filaments are believed to be a natural outcome of thermally unstable cooling from the hot ICM, probably triggered by feedback processes while contributing to feeding the AGN via chaotic cold accretion (CCA). However, the detailed constraints on the formation mechanism of the filaments are still uncertain, and the connection between the different gas phases has to be fully unveiled. By leveraging a sample of seven X-ray-bright cooling-flow clusters, we have discovered a tight positive correlation between the X-ray surface brightness and the Hα surface brightness of the filaments over two orders of magnitude, as also found in stripped tails. We further show the quantitative consistency of such a relation with CCA predictions by leveraging hydrodynamical simulations. This discovery provides evidence for a shared excitation mechanism between hot and warm filaments, where multiphase condensation, triggered by AGN feedback, drives their tight co-evolution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信