Sha Zhu, Yiwen Zhang, Jiaxue Feng, Yongji Wang, Kunpeng Zhai, Hanke Feng, Edwin Yue Bun Pun, Ning Hua Zhu, Cheng Wang
{"title":"Integrated lithium niobate photonic millimetre-wave radar","authors":"Sha Zhu, Yiwen Zhang, Jiaxue Feng, Yongji Wang, Kunpeng Zhai, Hanke Feng, Edwin Yue Bun Pun, Ning Hua Zhu, Cheng Wang","doi":"10.1038/s41566-024-01608-7","DOIUrl":null,"url":null,"abstract":"<p>Millimetre-wave (mmWave) radars are key enabler in the upcoming 6G era for high-resolution sensing and detection. Conventional photonic radars are mostly realized in tabletop systems composed of bulky discrete components, whereas the more compact integrated photonic radars are difficult to reach the mmWave bands owing to the unsatisfactory bandwidths and signal integrity of the underlying electro-optic modulators. Here we overcome these challenges and demonstrate a centimetre-resolution compact photonic mmWave radar based on a 4-inch wafer-scale thin-film lithium niobate (TFLN) technology. The TFLN photonic chip consists of a first electro-optic modulator for generating broadband radar waveforms via optical frequency multiplication, and a second modulator for de-chirping the received echoes. This greatly relieves the bandwidth requirements for the digital-to-analogue converter in the transmitter and analogue-to-digital converter in the receiver. Operating in the mmWave V band (40–50 GHz), we achieve multi-target ranging with a resolution of 1.50 cm and velocity measurement with a resolution of 0.067 m s<sup>−1</sup>. Furthermore, we construct an inverse synthetic aperture radar with a two-dimensional resolution of 1.50 cm × 1.06 cm. Our integrated TFLN photonic mmWave radar chip provides a compact and cost-effective solution in the 6G era for high-resolution sensing and detection in vehicle radar, airborne radar and smart homes.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"30 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01608-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Millimetre-wave (mmWave) radars are key enabler in the upcoming 6G era for high-resolution sensing and detection. Conventional photonic radars are mostly realized in tabletop systems composed of bulky discrete components, whereas the more compact integrated photonic radars are difficult to reach the mmWave bands owing to the unsatisfactory bandwidths and signal integrity of the underlying electro-optic modulators. Here we overcome these challenges and demonstrate a centimetre-resolution compact photonic mmWave radar based on a 4-inch wafer-scale thin-film lithium niobate (TFLN) technology. The TFLN photonic chip consists of a first electro-optic modulator for generating broadband radar waveforms via optical frequency multiplication, and a second modulator for de-chirping the received echoes. This greatly relieves the bandwidth requirements for the digital-to-analogue converter in the transmitter and analogue-to-digital converter in the receiver. Operating in the mmWave V band (40–50 GHz), we achieve multi-target ranging with a resolution of 1.50 cm and velocity measurement with a resolution of 0.067 m s−1. Furthermore, we construct an inverse synthetic aperture radar with a two-dimensional resolution of 1.50 cm × 1.06 cm. Our integrated TFLN photonic mmWave radar chip provides a compact and cost-effective solution in the 6G era for high-resolution sensing and detection in vehicle radar, airborne radar and smart homes.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.