An exploratory study of pilot EEG features during the climb and descent phases of flight.

Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang
{"title":"An exploratory study of pilot EEG features during the climb and descent phases of flight.","authors":"Li Ji, Leiye Yi, Haiwei Li, Wenjie Han, Ningning Zhang","doi":"10.1515/bmt-2024-0412","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.</p><p><strong>Methods: </strong>By performing wavelet packet decomposition on the EEG signals, we examined EEG maps during these critical phases and analyzed changes in signal intensity. To delve deeper, we calculated the log-transformed power of electroencephalograms to investigate the EEG responses under different flight conditions. Additionally, we conducted EEG spectral coherence analysis to evaluate the degree of synchronization between different electrodes during climb and descent.</p><p><strong>Results: </strong>This analysis helps us understand the functional connectivity changes in various brain regions during these phases. Understanding these complex interactions is crucial, as it provides insights into the cognitive processes of pilots during the critical climb and descent stages of flight, contributing to enhanced aviation safety.</p><p><strong>Conclusions: </strong>By identifying how brain activity fluctuates during these phases, we can better comprehend pilots' decision-making processes, ultimately leading to the development of more effective training programs and safety protocols. This research underscores the importance of neurological studies in safety.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2024-0412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

Methods: By performing wavelet packet decomposition on the EEG signals, we examined EEG maps during these critical phases and analyzed changes in signal intensity. To delve deeper, we calculated the log-transformed power of electroencephalograms to investigate the EEG responses under different flight conditions. Additionally, we conducted EEG spectral coherence analysis to evaluate the degree of synchronization between different electrodes during climb and descent.

Results: This analysis helps us understand the functional connectivity changes in various brain regions during these phases. Understanding these complex interactions is crucial, as it provides insights into the cognitive processes of pilots during the critical climb and descent stages of flight, contributing to enhanced aviation safety.

Conclusions: By identifying how brain activity fluctuates during these phases, we can better comprehend pilots' decision-making processes, ultimately leading to the development of more effective training programs and safety protocols. This research underscores the importance of neurological studies in safety.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信