Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study.

Ola Mohammed Youssef, Nehal I A Goda, Mona A Hassan, Nora Elshehawy Helal
{"title":"Selenium modulates bisphenol A-induced intestinal apoptosis, oxidative stress and autophagy in rats: A biochemical, histological and immunohistochemical study.","authors":"Ola Mohammed Youssef, Nehal I A Goda, Mona A Hassan, Nora Elshehawy Helal","doi":"10.1080/19338244.2025.2455098","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups. The first group received corn oil and served as the control. The second group was administered Se (1 mg/kg body weight; BW). The third group was given oral BPA (50 mg/kg BW). In the fourth group, Se (1 mg/kg BW) and BPA (50 mg/kg BW) were administered simultaneously. This experiment lasted for eight weeks. Specimens from the large intestine were subjected to biochemical analysis of antioxidants and oxidative stress biomarkers, histological observation under light and transmission electron microscopy and immunohistochemistry to autophagy and apoptosis markers. The BPA-exposed group showed significantly elevated oxidative stress markers associated with significant decline of antioxidants in intestinal tissues. BPA resulted in histological alterations such as severe mucosal necrosis with massive inflammatory cell infiltration. Ultra-structurally, the same group showed severe loss of the cell organelles, shrunken nuclei, and abundant autophagosomes. Immunohistochemistry results demonstrated a strong reactivity of caspase-3 and LC3 in the BPA group in contrast to the reaction to p62, which was markedly diminished. These effects were mitigated in the BPA+Se group. We concluded that BPA's harmful effects on the large intestine are caused by apoptosis and autophagy. Se may protect intestinal cells from these effects and could be a useful and trustworthy approach for reducing BPA toxicity.</p>","PeriodicalId":93879,"journal":{"name":"Archives of environmental & occupational health","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of environmental & occupational health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19338244.2025.2455098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups. The first group received corn oil and served as the control. The second group was administered Se (1 mg/kg body weight; BW). The third group was given oral BPA (50 mg/kg BW). In the fourth group, Se (1 mg/kg BW) and BPA (50 mg/kg BW) were administered simultaneously. This experiment lasted for eight weeks. Specimens from the large intestine were subjected to biochemical analysis of antioxidants and oxidative stress biomarkers, histological observation under light and transmission electron microscopy and immunohistochemistry to autophagy and apoptosis markers. The BPA-exposed group showed significantly elevated oxidative stress markers associated with significant decline of antioxidants in intestinal tissues. BPA resulted in histological alterations such as severe mucosal necrosis with massive inflammatory cell infiltration. Ultra-structurally, the same group showed severe loss of the cell organelles, shrunken nuclei, and abundant autophagosomes. Immunohistochemistry results demonstrated a strong reactivity of caspase-3 and LC3 in the BPA group in contrast to the reaction to p62, which was markedly diminished. These effects were mitigated in the BPA+Se group. We concluded that BPA's harmful effects on the large intestine are caused by apoptosis and autophagy. Se may protect intestinal cells from these effects and could be a useful and trustworthy approach for reducing BPA toxicity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信