Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling

IF 4.5 2区 医学 Q1 INFECTIOUS DISEASES
Verónica Moreno-Martín , Maria López , David Bou , Sónia Fraga , João Paulo Teixeira , Ana López-Lilao , Vicenta Sanfélix , Eliseo Monfort , Mar Viana
{"title":"Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling","authors":"Verónica Moreno-Martín ,&nbsp;Maria López ,&nbsp;David Bou ,&nbsp;Sónia Fraga ,&nbsp;João Paulo Teixeira ,&nbsp;Ana López-Lilao ,&nbsp;Vicenta Sanfélix ,&nbsp;Eliseo Monfort ,&nbsp;Mar Viana","doi":"10.1016/j.ijheh.2025.114523","DOIUrl":null,"url":null,"abstract":"<div><div>Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings. This work aims to provide insights into the release and physico-chemical properties of INP while contributing to improving models for INP release. INP release was evaluated through a case study in a ceramic tile firing facility, where aerosol (10 nm - 10 μm) properties were determined. The Control Banding (CB) Nanotool model was applied to test outputs based on provided input parameters.</div></div><div><h3>Results</h3><div>demonstrate the constant generation and release of INP during tile firing, with NP concentrations up to 68711/cm³ and mean diameters of 37 nm, with 95% smaller than 100 nm. Particle morphology was mostly spherical, suggesting nucleation from precursor gases as the main formation mechanism. INP chemical composition was driven by primary ceramic components, while trace elements like Ni and Ti exhibited size-dependent patterns. In vitro cell viability tests indicated low to medium cytotoxicity of PM<sub>2</sub> aerosols, decreasing human alveolar epithelial cell viability in a concentration-dependent manner. Applying the risk model with varying input parameters revealed that the risk level (RL) based on severity scores decreased when aerosol size distribution data were used, illustrating the model's sensitivity to input variables.</div><div>We conclude on the need for comprehensive experimental datasets to support risk assessment models and achieve effective risk management strategies in real-world scenarios.</div></div>","PeriodicalId":13994,"journal":{"name":"International journal of hygiene and environmental health","volume":"264 ","pages":"Article 114523"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hygiene and environmental health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438463925000057","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings. This work aims to provide insights into the release and physico-chemical properties of INP while contributing to improving models for INP release. INP release was evaluated through a case study in a ceramic tile firing facility, where aerosol (10 nm - 10 μm) properties were determined. The Control Banding (CB) Nanotool model was applied to test outputs based on provided input parameters.

Results

demonstrate the constant generation and release of INP during tile firing, with NP concentrations up to 68711/cm³ and mean diameters of 37 nm, with 95% smaller than 100 nm. Particle morphology was mostly spherical, suggesting nucleation from precursor gases as the main formation mechanism. INP chemical composition was driven by primary ceramic components, while trace elements like Ni and Ti exhibited size-dependent patterns. In vitro cell viability tests indicated low to medium cytotoxicity of PM2 aerosols, decreasing human alveolar epithelial cell viability in a concentration-dependent manner. Applying the risk model with varying input parameters revealed that the risk level (RL) based on severity scores decreased when aerosol size distribution data were used, illustrating the model's sensitivity to input variables.
We conclude on the need for comprehensive experimental datasets to support risk assessment models and achieve effective risk management strategies in real-world scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
5.00%
发文量
151
审稿时长
22 days
期刊介绍: The International Journal of Hygiene and Environmental Health serves as a multidisciplinary forum for original reports on exposure assessment and the reactions to and consequences of human exposure to the biological, chemical, and physical environment. Research reports, short communications, reviews, scientific comments, technical notes, and editorials will be peer-reviewed before acceptance for publication. Priority will be given to articles on epidemiological aspects of environmental toxicology, health risk assessments, susceptible (sub) populations, sanitation and clean water, human biomonitoring, environmental medicine, and public health aspects of exposure-related outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信