A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system.

Benjamin J Choi, Ji Liu
{"title":"A low-cost transhumeral prosthesis operated via an ML-assisted EEG-head gesture control system.","authors":"Benjamin J Choi, Ji Liu","doi":"10.1088/1741-2552/adae35","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Key challenges in upper limb prosthetics include a lack of effective control systems, the often invasive surgical requirements of brain-controlled limbs, and prohibitive costs. As a result, disuse rates remain high despite potential for increased quality of life. To address these concerns, this project developed a low cost, noninvasive transhumeral neuroprosthesis-operated via a combination of electroencephalography (EEG) signals and head gestures.<i>Approach.</i>To address the shortcomings of current noninvasive neural monitoring techniques-namely, single-channel EEG-we leveraged machine learning (ML), creating a neural network-based EEG interpretation algorithm. ML generation was guided by two underlying goals: (1) to improve overall system performance by combining discrete models using a prediction voting scheme, and (2) to favor model<i>diversity</i>within these new neural network ensembles, as opposed to individual model<i>performance</i>. EEG data from eight frequency bands was collected from human subjects to train a ML algorithm employing a hierarchical mixture-of-experts structure. We also implemented head gesture-based control to assist in the generation of additional stable classes for the control system.<i>Main results.</i>The final model performs competitively with existing EEG interpretation systems. Inertial measurement unit (IMU)-based head gestures supplement the neural control system, with 270° actuation of synovial elbow and radial wrist joints driven by intuitive corresponding head gestures. The brain-controlled prosthesis presented in this study costs US$300 to manufacture and achieved competitive performance on a Box and Block Test.<i>Significance.</i>These results suggest proof-of-concept for potential application as an alternative to current prosthetics, but it is important to note that the demonstration in this study remains exploratory. Future work includes broader clinical testing and exploring further uses for the developed ML system.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adae35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Key challenges in upper limb prosthetics include a lack of effective control systems, the often invasive surgical requirements of brain-controlled limbs, and prohibitive costs. As a result, disuse rates remain high despite potential for increased quality of life. To address these concerns, this project developed a low cost, noninvasive transhumeral neuroprosthesis-operated via a combination of electroencephalography (EEG) signals and head gestures.Approach.To address the shortcomings of current noninvasive neural monitoring techniques-namely, single-channel EEG-we leveraged machine learning (ML), creating a neural network-based EEG interpretation algorithm. ML generation was guided by two underlying goals: (1) to improve overall system performance by combining discrete models using a prediction voting scheme, and (2) to favor modeldiversitywithin these new neural network ensembles, as opposed to individual modelperformance. EEG data from eight frequency bands was collected from human subjects to train a ML algorithm employing a hierarchical mixture-of-experts structure. We also implemented head gesture-based control to assist in the generation of additional stable classes for the control system.Main results.The final model performs competitively with existing EEG interpretation systems. Inertial measurement unit (IMU)-based head gestures supplement the neural control system, with 270° actuation of synovial elbow and radial wrist joints driven by intuitive corresponding head gestures. The brain-controlled prosthesis presented in this study costs US$300 to manufacture and achieved competitive performance on a Box and Block Test.Significance.These results suggest proof-of-concept for potential application as an alternative to current prosthetics, but it is important to note that the demonstration in this study remains exploratory. Future work includes broader clinical testing and exploring further uses for the developed ML system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信