Machine Learning-Based Radiomics Analysis for Identifying KRAS Mutations in Non-Small-Cell Lung Cancer from CT Images: Challenges, Insights and Implications.

IF 3.2 3区 生物学 Q1 BIOLOGY
Life-Basel Pub Date : 2025-01-11 DOI:10.3390/life15010083
Mirjam Schöneck, Nicolas Rehbach, Lars Lotter-Becker, Thorsten Persigehl, Simon Lennartz, Liliana Lourenco Caldeira
{"title":"Machine Learning-Based Radiomics Analysis for Identifying KRAS Mutations in Non-Small-Cell Lung Cancer from CT Images: Challenges, Insights and Implications.","authors":"Mirjam Schöneck, Nicolas Rehbach, Lars Lotter-Becker, Thorsten Persigehl, Simon Lennartz, Liliana Lourenco Caldeira","doi":"10.3390/life15010083","DOIUrl":null,"url":null,"abstract":"<p><p>Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric (<i>t</i> test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques. Afterwards, the proposed ML pipeline was applied to both datasets using a five-fold cross-validation on the training set (70/30 train/test split) before being validated on the other dataset. The results show that the radiomic features are significantly different (Mann-Whitney U test; <i>p</i> < 0.05) between the two datasets, despite the use of identical feature extraction methods. Model transferability is therefore difficult to achieve, which became evident during external testing (F1 score = 0.41). Oversampling, undersampling, clustering and harmonization techniques were applied to balance and harmonize the datasets, but did not improve the classification of KRAS mutation presence. In general, due to only a single moderate result (highest test F1 score = 0.67), the accuracy of KRAS prediction is not sufficient for clinical application. In future work, the complexity of KRAS mutation might be addressed by taking submutations into consideration. Larger multicentric datasets with balanced tumor stages, including multi-scanner datasets, seem to be necessary for building robust predictive models.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766547/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010083","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric (t test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques. Afterwards, the proposed ML pipeline was applied to both datasets using a five-fold cross-validation on the training set (70/30 train/test split) before being validated on the other dataset. The results show that the radiomic features are significantly different (Mann-Whitney U test; p < 0.05) between the two datasets, despite the use of identical feature extraction methods. Model transferability is therefore difficult to achieve, which became evident during external testing (F1 score = 0.41). Oversampling, undersampling, clustering and harmonization techniques were applied to balance and harmonize the datasets, but did not improve the classification of KRAS mutation presence. In general, due to only a single moderate result (highest test F1 score = 0.67), the accuracy of KRAS prediction is not sufficient for clinical application. In future work, the complexity of KRAS mutation might be addressed by taking submutations into consideration. Larger multicentric datasets with balanced tumor stages, including multi-scanner datasets, seem to be necessary for building robust predictive models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Life-Basel
Life-Basel Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍: Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信